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Abstract

Properties play a central role in most theories of conceptual knowl-
edge. Since computational models derived from word co-occurrence
statistics have been claimed to provide a natural basis for semantic
representations, the question arises of whether such models are capable
of producing reasonable property-based descriptions of concepts, and
whether these descriptions are similar to those elicited from humans.
This article presents a qualitative analysis of the properties generated
by humans in two different settings, as well as those produced, for
the same concepts, by two computational models. In order to find
high-level generalizations, the analysis is conducted in terms of prop-
erty types, i.e., categorizing properties into classes such as functional
and taxonomic properties. We discover that differences and similar-
ities among models cut across the human/computational distinction,
suggesting on the one hand caution in making broad generalizations,
e.g., about “grounded” and “amodal” approaches, and, on the other,
that different models might reveal different facets of meaning, and
thus they should rather be integrated than seen as rival ways to get
at the same information.
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1 Introduction

The notion of property plays a central role in cognitive science and linguistics.
Apart from the proponents of “conceptual atomism” (Fodor 1998), a larger
consensus exists around the idea that concepts and meanings are complex
assemblies of properties or features. Various behavioral tasks concerning se-
mantic memory (e.g., categorization, similarity, inference, etc.) are modeled
as processing at the level of the properties that compose concepts. Properties
are themselves bits of conceptual structures, and their cognitive status and
organization is at the center of a wide debate (Salomon and Barsalou 2001;
Vigliocco and Vinson 2007). Independently of the specific form in which we
can represent properties (feature lists, semantic networks, frames, etc.), a
key issue is exactly how to capture the very notion of being a property of a
concept. A possible answer to this question is that properties are salient as-
pects or attributes associated with or shared by a category of entities, which
enter into the constitution of the concept for that category. According to
this view, the fact that a particular feature (color, shape, behavior, action,
etc.) is typically observed co-occurring with a certain category of entities is
strongly related to its becoming one of the properties that form the concep-
tual representation of the category.

Concepts and properties surface in language as words and phrases, and
they provide a semantic interpretation for these linguistic elements. Through
language, fragments of our conceptual structures are communicated to other
speakers, in turn influencing their knowledge of the world. A long-standing
tradition has pointed out the key role played by the way words distribute
in texts and co-occur with other linguistic expressions in shaping their se-
mantic content. More recently, the hypothesis that corpus-derived word co-
occurrence statistics can provide a natural basis for semantic representations
has also been gaining growing attention in cognitive science (Landauer and
Dumais 1997; Vigliocco and Vinson 2007). Some variation of the so-called
distributional hypothesis – i.e., words with similar distributional properties
have similar semantic properties – lies at the heart of a number of computa-
tional approaches commonly known as word space models (Sahlgren 2006).
These share the assumption that it is possible to represent the semantic con-
tent of words in vector spaces built through the statistical analysis of the
contexts in which words co-occur. Distributional models of meaning are di-
rectly related to the classical discovery procedure of the structuralist tradition
(Harris 1968) and to the collocational analysis typical of corpus linguistics
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(Firth 1957). Both have gained new momentum thanks to the availability of
large-scale textual corpora, access to more sophisticated mathematical tech-
niques to model word statistical co-occurrence, and – last but not least – the
development in the last decades of an infrastructure for the computerized
analysis of linguistic data that has turned the distributional approach into
an effective tool for building lexico-semantic representations from texts.

A major question concerns the relationship between concepts and seman-
tic representations as clusters of properties on the one hand, and as corpus-
based co-occurrence distributions on the other. More specifically, we intend
to clarify to what extent the linguistic expressions that more significantly
co-occur with a word are correlated with the properties that human subjects
typically ascribe to the concept expressed by that word. The long-term aim
of this research is to achieve a better understanding of the relation between
the notion of property of a concept as a cognitive construct, and the seman-
tic properties of a word as determined by its syntagmatic and paradigmatic
distribution.

Investigating these issues is an essential step towards an effective evalu-
ation of the potential for corpus-based distributional representations to be
taken as models for the human property space, as well as towards a real un-
derstanding of the type of semantic information word space models are able
to provide. Although distributional models have been proposed as plausible
simulations of human semantic space organization, careful and extensive ex-
plorations of such claim are still lacking, with few notable exceptions such as
Vigliocco et al. (2004).

With this goal in mind, we will carry out an in-depth comparison between
corpus-based property spaces generated by distributional models and sub-
jects’ elicited property spaces. Two highly different types of human property
spaces (Section 2) will be compared to two different approaches to semantic
modeling based on distributional data extracted from corpora (Section 3).
The four target spaces will be analyzed in terms of the type of properties
associated with different semantic classes of concepts expressed by concrete
nouns (Section 4). This multi-way analysis allows us to look at similarities
and differences both within human and computational models, and between
these two categories.

As far as we know, we are the first to propose a qualitative compar-
ison of human and computational spaces in terms of property types (the
computational literature, in particular, has focused on objective measures of
performance, but very little work has been done on the analysis of why the
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models behave the way they do). Moreover, we introduce the new StruDEL
word space model (Section 3.2), and we might be the first to look at the ESP
Game data (Section 2.2) from the point of cognitive science.

2 Human property spaces

Many researches in cognitive psychology have recognized the added value
provided by property generation tasks as a source of evidence to achieve a
better understanding of the human property space, i.e., the features that
compose the structure of concepts. In these tasks, subjects are typically
presented with a concept name and are asked to generate the properties
they consider important in order to describe the concept. The elicited data
are then collected into semantic feature norms, i.e., list of concepts with the
properties most frequently produced by subjects in response to a set of target
concepts.

Feature norms are used to test the predictions of theoretical and compu-
tational models of human semantic memory. For instance, Wu and Barsalou
(submitted) used a property generation task to compare theories of concepts
based on perceptual symbol systems versus those that assume amodal proper-
ties. Moreover, feature norms have been used to construct stimuli for further
experimental research on semantic priming (Vigliocco et al. 2004), property
verification (Cree et al. 2006), semantic category specific deficits (Vinson et
al. 2003), etc.

Many psychologists warn against a literal interpretation of semantic norms
as if they were “snapshots” of the property structure of concepts (McRae et
al. 2005). However, as long as subjects use their semantic representations
when asked to generate properties for a concept, these data can be used as
important probes to investigate the organization of human semantic knowl-
edge. For instance, they can provide information about the type of properties
generated by the subjects, their degree of distinctiveness, as well as the cor-
relation between property types and different semantic categories. Some of
these issues will also be touched in the analysis that we will present in Section
4.

Subject elicited properties can themselves be regarded as models of the
featural organization of concepts, i.e., as models of the property spaces that
shape the structure and representation of human semantic memory. The
major aim of our research is to investigate the correlation between these

4



human-derived models of property spaces and corpus-based computational
models. To this purpose we have used two different sets of subject-generated
properties. The first one comes from the feature norms of McRae et al.
(2005), a well-known resource in cognitive science. The second set is instead
represented by a corpus of image labels collected on the Web in the context of
the ESP Game initiative (von Ahn and Dabbish 2004). We will now provide
a brief descriptions of these property spaces, followed by a more detailed
analysis of the their complementary character.

2.1 NORMS: The subject elicited feature norms of
McRae et al.

The semantic feature norms described in McRae et al. (2005) (henceforth
NORMS) are the largest set of norms available to date.1 NORMS includes
semantic features collected from approximately 725 participants for 541 living
(dog) and nonliving (car) basic-level concepts. Each normed concept corre-
sponds to an English noun. The selection of nouns covers items most com-
monly used in various types of experiments on semantic memory. NORMS
data were collected through a questionnaire asking subjects to list features
that would describe target concepts (presented as words). The instructions
also included examples of the types of properties that might be listed (e.g.,
physical properties, parts, etc.). Crucially, the stimuli were presented out of
context, apart from homographs (e.g., bat), which were accompanied by a
short textual clue to the relevant sense. Participants were students of var-
ious Canadian and American universities. Each concept was normed by 30
subjects.

The collected data underwent manual revision by the experimenters to
normalize the subjects’ productions, e.g., by ensuring that synonymous fea-
tures were coded identically (e.g., used for transportation and used for trans-
port were turned into an identical string). Features were made more explicit
to ensure a better identification of the property type (e.g., has was added
to productions describing parts of an object, such as has legs). In a later
phase, the collected features were also classified with respect to the basic
semantic type of the property. McRae et al. (2005) adapted the taxonomy of
property types developed by Wu and Barsalou (submitted) (cf. Section 4 and

1The norms can be downloaded from the Psychonomic Society Archive of Norms, Stim-
uli, and Data (http://www.psychonomic.org/archive).
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Appendix B for more details). NORMS also includes a number of measures
characterizing the distribution of properties for the various concepts, such
as feature distinctiveness (i.e., the number of concepts in which a property
appears), number of distinguishing features for each concept, etc. The most
relevant statistics for our analyses is the feature production frequency, i.e.,
the number of subjects out of 30 participants that listed a property. This
measure is used by McRae et al. (2005) to rank the properties of each con-
cepts, and we based on it the selection of the properties for the analysis in
Section 4. As an example, Table 1 reports the top properties of the concept
car in NORMS.

Concept Top properties Property types Production frequency
car used for transportation function (sf ) 19

has wheels external component (ece) 19
has 4 wheels external component (ece) 18
has doors external component (ece) 13
has an engine internal component (eci) 13

Table 1: Top 5 properties for the concept car in NORMS, together with their
semantic types and production frequencies

2.2 Describing pictures: the ESP Game

ESP, the second property space we used, was built from a larger set of image
descriptors collected within the ESP Game initiative (von Ahn and Dabbish
2004).2 The ESP Game is an attempt to label images on the Web through
volunteer contribution by Internet users. The initiative is close in spirit to
other enterprises (e.g., Wikipedia, Open Mind, etc.) that resort to on-line
collaborative work to collect various types of knowledge. The ESP Game
has however at least two peculiar features: First, its goal is to label images
with words describing their content, for the long-term purpose of improving
image search. Second, users label the images by playing an online game.

The game is played by two randomly matched partners that see the same
image and are not allowed to communicate. Players must guess the label
their partners are typing for each image. When the partners have agreed on

2http://www.espgame.org/
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a label, they get point and move on to the next image. They must try to
agree on as many images as they can in 2.5 minutes. Players are free to use
whatever word they want, except for those that belong to the list of so-called
“taboo words” for an image. This set includes those words that have already
been associated to that image by other players. Taboo words guarantee a
large variation in the labels associated to an image. The images presented to
the players belong to a collection of 350,000 pictures randomly downloaded
from Google. Images can be of all possible sorts: portraits, objects in context,
landscapes, etc.

The most relevant aspect of the ESP Game is that the players are never
explicitly asked to describe the image. They just have to guess what the
partner is thinking and writing (hence the suggestive name “ESP” for “extra-
sensorial perception”). However, since the image is the only thing that the
partners share, the most natural way for them to coordinate their minds is
to type words corresponding to salient features of the image content. The
evaluation by von Ahn and Dabbish (2004) indicates that, indeed, “the string
on which two players agree is typically a good label for the image”. The
game by-product is a large corpus of images associated with all the labels
the players agreed on.3 Some examples of this output are: speaker, hear,
audio, sound, speakers, black, button (description of music speakers); band,
guy, group, men oboe, music, hair, flute, violin, instrument, gray (music
ensemble); eat, table, people, wine, dinner (group of people eating).

For our purposes, the data collected through the ESP Game are a sort of
de facto property norms. ESP labels are descriptions of salient features of
the entities appearing in the images. Thus, they constitute a model of the
human property space which is elicited from human subjects in a thoroughly
spontaneous and uncontrolled way.

The ESP property space we analyze comes from a random sample of
ca. 363,000 labels from the whole ESP corpus. The labels are organized
into 50,000 sets, each set referring to the same image. The labels in the
original corpus were not lemmatized. The only processing we performed was
to discard all the sets containing words such as logo, ad, sign, label, etc., since
in logos and other icons an entity can be represented in a totally different
way from its actual nature (e.g., a banana can be blue, etc.).

3More precisely, the labels that are permanently associated with the images in the ESP
collection are those that have been agreed on by n pairs of players, with n a “threshold of
goodness” empirically fixed by the ESP designers.
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For each label pair, we count the number of distinct label sets (i.e., im-
age descriptions) in which both labels occur. In order to downplay the im-
portance of frequent, generic labels, we transform these raw counts into log-
likelihood ratio scores measuring the association strength between two labels.
Such scores are used to rank the labels associated to a given target noun.
Thus, the labels associated with a target noun (a label in itself) are taken
as a characterization of the properties of the corresponding concept. Table 2
reports an example of the top 5 labels associated with the noun car in the
ESP corpus.

Concept Top properties Property types Log-likelihood
car wheel external component (ece) 12.7

road location (sl) 11.4
truck coordinate (cc) 10.9
wheels external component (ece) 10.2
race associated event (sev) 9.7

Table 2: Top 5 labels co-occurring with car in ESP together with their
semantic types and their association strength measured by log-likelihood

2.3 Comparing NORMS and ESP

NORMS and ESP both consist of ranked lists of verbal descriptions of concept
properties. Nevertheless, they differ in various respects, mostly stemming
from the way these data were collected.

First of all, NORMS were elicited in an experimental situation and the
subjects were explicitly instructed to generate properties for a number of
concepts. Vice versa, the elicitation context of ESP was totally spontaneous,
and the players were not told to describe the images or any features of the
objects. The game task is only to coordinate with the partner. The fact that
labels end up describing properties of some entity in the picture only emerges
as a consequence of the subjects’ tendency to focus on salient aspects of the
picture they are describing. Moreover, target images are a random sample
from the Web, and thus there is no guarantee that they form a balanced set of
concepts, nor that they represent prototypical instances of objects. Both the
spontaneous nature of the task and the lack of control in stimulus generation
make ESP more similar to corpora than to elicitation experiments.
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Secondly, NORMS and ESP were obtained in two very different property
generation tasks. In the former, the subjects produced the properties of a
concept expressed by a noun written on the questionnaire. Conversely, in
ESP the properties were produced by players observing an image, i.e., in a
sort of “implicit” picture description task.

Last but not least, the property sets in NORMS were elicited by present-
ing the concept nouns out of context (apart from few cases of homography).
Conversely, most of the pictures labeled in ESP represent situated entities,
i.e., entities with a context, such as for instance a cow in a meadow, a person
driving a motorbike or drinking beer, etc. In some cases, there is a figure
clearly emerging from the background, while other pictures simply contain a
large scene with different entities involved in some activity. Since no instruc-
tion is provided about which entity is to be described, the players are free to
parse complex scenes as they please, and focus on specific objects with the
only constraint of maximizing the probability to converge on the partner’s
choice.

The differences between NORMS and ESP are particularly relevant in the
light of the recent debate in cognitive science on the situated nature of con-
ceptualization (Glenberg and Kaschak 2002; Barsalou 2005; Wu and Barsalou
submitted). According to the situated cognition view, concepts are grounded
to some extent on sensory-motor systems, and properties rather than being
abstract amodal symbols are themselves grounded in perception and action.
Wu and Barsalou (submitted) bring behavioral evidence showing the strong
correlation between properties generated by subjects explicitly instructed to
use mental images and the properties produced by subjects that did not re-
ceive such an instruction. These results are interpreted as supporting the
view that subjects generate properties of a concept by “running” percep-
tual simulations of its instances. Moreover, Wu and Barsalou show that an
average of 25% of the properties produced by their subjects are related to as-
pects of the prototypical contextual setting of the concept instances, such as
typical actions and locations, entities co-occurring in the same context, etc.
This fact is taken by the two authors as evidence that “Rather than being
decontextualized and stable, conceptual representations are contextualized
dynamically to support diverse courses of goal pursuit” [Barsalou 2005:622].

In the next sections, we will tackle the issue of how computational prop-
erty spaces correlate with subject-generated semantic feature sets. However,
our analysis will also focus on the comparative analysis of the types of prop-
erties in ESP and in NORMS. In fact, the peculiar characters of these two

9



models suggest that their comparison can provide interesting evidence on
the relationship between conceptual representations and perceptual features
(notice how ESP is by design a strongly “situated” property space), as well
as on the interplay between concepts and context.

3 Word space models

Corpus-based word space models (Sahlgren 2006) induce the semantic repre-
sentation of words from their patterns of co-occurrence in text. The meaning
of a word is thus represented by a vector whose dimensions are co-occurrence
scores or a function of co-occurrence scores. Standard geometrical methods
can then be used to assess semantic similarity in the vector space.

It is worth pointing out that cognitive work has concentrated on concepts,
rather than word meaning, that is instead the focus of word space models.
However, the two notions are close enough (see discussion in Murphy 2002,
chapter 11) that we will apply standard word space models to what cogni-
tive scientists might see as a “conceptual” task. The issues with a direct
comparison of properties generated by humans and computational models
discussed in Section 4.1 below largely arise from differences in the way in
which conceptual properties can be lexicalized, and an important problem
we gloss over here is that words tend to be polysemous, and thus point to
sets of concepts rather than single concepts.

We work with two word space models representing different traditions.
The model we call SVD takes a window-based view of co-occurrence, where
any word that occurs within a certain distance to the left or right of the
target is treated as context. Since this will typically lead to a very large and
sparse co-occurrence matrix, models of this sort benefit from dimensionality
reduction techniques such as singular value decomposition.

The StruDEL model takes instead a pattern-based view of co-occurrence,
treating as potential contexts only those words that are connected to the
target by patterns that might cue an interesting semantic relationship. While
general word space models rarely adopt this approach (we are only aware of
the line of research summarized in Poesio and Almuhareb in press), pattern-
based methods are common in studies that attempt to identify specific types
of semantic relations, at least since the seminal work of Hearst (1992) on the
hyponymy relation.

There is a large number of alternative word space models. We are not
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claiming that the ones we selected are the best or most interesting ones. How-
ever, we do believe that they are fairly representative of the two approaches
we just sketched, that, in turn, account, with important variations, for most
models we are familiar with.

In particular, the Hyperspace Analogue to Language (HAL) model (Burgess
and Lund 1997) is similar to our SVD, without dimensionality reduction (but
with dimension weighting). The popular Latent Semantic Analysis (LSA)
model (Landauer and Dumais 1997) is similar to our SVD, except that co-
occurrence is measured in terms of documents rather than word windows.
Window-based dimensionality-reduced models have been shown to outper-
form both non-reduced and document-based models at least in the classic
TOEFL synonym task (Rapp 2003, 2004).

In the dependency-based model of Padó and Lapata (in press) only words
that are linked by specific syntactic relations are treated as potential con-
texts. This model is intermediate between the window-based approach, that
is purely based on syntagmatic linear order, and the pattern-based approach,
that tries to zero in on semantically meaningful contexts.

3.1 SVD

Our SVD model is based on a lemmatized version of the BNC4 with only
content words (nouns, verbs, adjectives) preserved. The 21,000 most frequent
words in this version of the corpus (minus the top 10 most frequent words) are
treated as targets, i.e., words for which we build a semantic representation.
The top 2,000 words (minus the top 10 most frequent ones) are treated as
potential contexts, i.e., the words whose co-occurrence with the targets is
recorded.

We build a target-by-context co-occurrence frequency matrix, counting
only instances in which a potential context word occurs within a window of 5
words from a target. The co-occurrence matrix generated in this way is then
reduced using singular value decomposition. The reduced matrix has 21,000
rows (the target words) and 125 dimensions (the 125 left singular vectors that
account for most of the variance, multiplied by the corresponding singular
values). The word space is constructed using the Infomap tool.5

In a previous experiment with the widely used TOEFL synonym set,

4http://www.natcorp.ox.ac.uk/
5http://infomap-nlp.sourceforge.net/
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the same SVD model we are using here reached accuracy around 91.3%,
comparable to the best performance on this task reported by Rapp (2003).
Thus, we are experimenting with a state-of-the-art SVD-based model.

What are the “properties” of concepts in SVD? The most straightforward
approach would be to treat the reduced space dimensions as properties. How-
ever, these dimensions are hard to interpret. An attempt in this direction
would be to look at the n words that have the highest and lowest values
on a dimension, to get a gist of what the dimension is about. A preliminary
analysis along these lines of the top 10 dimensions and of a random sample of
10 other lower ranked dimensions suggests that this approach will not work
for our purposes. This becomes clear by looking at Table 3, that reports
the top (positive valued) and bottom (negative valued) 5 words associated
to (randomly chosen) dimensions 5 and 15.

Dimension Top words Bottom words
5 political, rhetoric, ideology, around, average, approximately,

thinking, religious compare, increase
15 juice, colouring, dish, cream, salad police, policeman, road, drive, stop

Table 3: Words with 5 top and lowest values on dimensions 5 and 15 of SVD
model.

Table 3 clearly illustrates two problems with treating dimensions as prop-
erties. First, they correspond to broad domains or topics (intellectual life,
quantities, food, car traffic. . . ) rather than to specific properties (the clas-
sification by domain is orthogonal to the one by property type). Second,
each dimension tends to do double duty (at least), with positive value locked
onto one domain and lower values locked onto another, unrelated domain (it
is hard to see a relation between, say, food preparation and traffic) – con-
versely, although it is not illustrated here, we found several cases in which
different dimensions pointed to the same domain. These findings essentially
confirm the fairly common statement in the literature that the dimensions
of SVD matrices are not directly interpretable as semantic features (Kintsch
2001). Instead, the only viable way to explore the meaning of a vector is by
inspecting the words that appear close to it in the semantic space.

Therefore, we took the nearest neighbours of a word in the Euclidean
space defined by the dimensions (with cosine as the nearness measure) to be
the SVD-produced properties of a word/concept. Property identification is
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not one of the tasks that word space models of this sort were designed for,
and we realize that their proponents could argue that we are putting them to
an improper usage. However, to the extent that properties are an important
aspect of concepts, the nearest-neighbour-as-property approach is the most
natural one for SVD and related models.

Continuing with the car example, the top 5 properties of this concept in
the SVD space are listed in Table 4.

Concept Top properties Property types Cosines
car van coordinate (cc) .75

driver participant (sp) .73
vehicle superordinate (ch) .71
park action (sa) .70
motorist participant (sp) .69

Table 4: Top 5 properties (=neighbours) for the car concept in SVD, together
with their semantic type and cosine.

3.2 StruDEL

Whereas SVD is a “garden variety” word space model, of the sort often en-
countered in the literature, the StruDEL model (for Structured Dimension
Extraction and Labeling) is first proposed here. We will not argue for the
virtues of StruDEL (it does have many, but they will be presented elsewhere),
but rather use it as the representative of an approach to word space models
that differs from the “flat co-occurrence” of SVD, being based on the search
for semantically meaningful patterns. As we already mentioned, StruDEL
should be seen as a generalization of the pattern-based approach to informa-
tion mining used by Hearst (1992) and many others.

StruDEL builds structured word spaces in two phases. First, it uses
pattern matching to find and rank potential properties of the target words
(concepts). Then, it generalizes from the strings connecting concepts and
properties to find (lexical correlates of) the relation that links them. One
fundamental intuition behind StruDEL is that true semantic relations will
be expressed by a variety of surface realizations. Thus, rather than ranking
properties on the basis of token frequency, it ranks them on the basis of the
number of distinct patterns that connect them to the target concepts.
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Given a list of target nouns and a (POS-tagged) corpus, StruDEL looks
for nouns, adjectives and verbs that occur in the near of a target. Only
words that are linked to the target by a connector pattern that follows one
of a limited set of templates are considered potential properties.

The templates for nominal properties are simple regular expressions that
specify that the target and property must either be adjacent (the noun-noun
compound case) or they must be connected by a (possibly complex) prepo-
sition, or a verb, or the possessive (’s), or a relative such as whose. Optional
material, such as adjectives and articles, can occur in the connector pattern,
whereas other categories, such as names and sentence boundaries, act as a
barrier blocking the potential template match. The template matching com-
ponent also performs basic pattern normalization by replacing all verbs and
adjectives that are not in a “keep list” of 50 frequent verbs and 10 frequent
adjectives with the corresponding POS tags. Table 5 presents (somewhat
simplified)6 examples of the extraction procedure for the concept onion and
the candidate property layer. Similar rules are applied to the extraction of
adjective and verb properties.

Input Output Notes
Pattern Position

layer from an onion from a right an normalized to a
layers in a red onion in a JJ right red mapped to JJ
onion with different layers with different left frequent adj different

preserved
onions and with their layers Ø conjunction blocks

pattern extraction

Table 5: Examples of input and output to the StruDEL pattern template
component. Notice the Position field, included in the pattern and recording
whether the concept is the word to the left (onion with different layers) or
right (layer from an onion).

In the next and crucial step, concept-property pairs are ranked based on
the number of distinct patterns that link them, ignoring the token frequency
of the concept-property-pattern tuple. The intuition behind this approach is

6The full patterns also include POS tags and lemmas (from/IN/from a/DT/a), as well
as morphological information about target and property (so that layers from an onion
and layer from an onion produce different patterns because of the number difference in
the property). These aspects are omitted for readability.
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that a single, frequent concept-pattern-property tuple could simply be a fixed
expression, or more in general a combination that is frequent for accidental
reasons. On the other hand, if concept and property appear with many
distinct patterns, i.e., their relation is predicated in many different ways, it
is more likely that they are connected by an inherent semantic link. For
example, year of the tiger is much more frequent in our corpus than any
pattern connecting tail and tiger. However, year of the tiger, because of its
idiosyncratic nature and proper-noun-like usage, is the only attested pattern
linking these two words (we do not find: year of some tigers, tigers have
years, etc.). The relationship of tigers with tails, instead, is expressed in a
number of ways: tail of the tiger, tail of a tiger, tigers have tails, tigers with
tails, etc. Pattern type frequency is a better cue to semantics than token
frequency.

More precisely, our rank is based on the strength of the statistical as-
sociation between concepts and properties sampled from the list of distinct
tuples (akin to sampling concepts and properties from a dictionary of dis-
tinct longer strings rather than from a corpus). Association, measured by
the log-likelihood ratio statistic, is better than raw frequency since it weights
down properties that might occur in a number of patterns simply in virtue
of their generic nature (e.g., year and time, that can occur with almost any-
thing). For practical reasons, we preserve only those properties that are very
significantly (p < .00001) associated with a concept.

In the next step of the StruDEL procedure, we provide a shallow descrip-
tion of the relation occurring between a concept and a property by gener-
alizing across similar patterns that connect them, and keeping track of the
distribution of these generalized patterns in what we call the type sketch of
the pair (the generalized patterns are seen as shallow cues to relation types).
We are following here a long tradition in lexical semantics proposing that
semantic relations can be captured directly by the explicit syntactic material
expressing them (see, most notably, Levi 1978). We store the whole type
distribution associated with a concept-property pair, rather than the most
common type, because this is useful for disambiguation purposes (in might
cue hypernymy in a sketch with such as, but location if it occurs with on).

Generalization is performed by another simple rule-based module that
essentially looks for prepositions, verbs and other “meaningful” components
of a pattern. Consider a hypothetical concept-property pair occurring with
the following patterns: with a number of (2 times), with a (1 time), with
JJ (1 time), have (1 time) and has (1 time). The type sketch for this pair
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would be: with (66.6%), have (33.3%). Illustrative examples of the StruDEL
output, including type sketches, are presented in Table 6.

Concepts Properties log-likelihood Type sketches
child parent-n 11726.7 of+right (40%), with+right (11%)
child parent-v 120.8 +right (79%)
lion mane-n 259.1 ’s+left (50%), with+left (15%),

have+left (12%), of+right (10%)
egg female-n 1603.4 produce+right (13%), by+left (12%)

breakfast croissant-n 257.2 for+right (46%), of+left (34%),
with+left (12%)

beach walk-v 687.6 +right (29%), from+right (24%),
along+right (23%), on+right (13%)

grass green-j 277.6 +right (58%), is+left (25%),
is ADV+left (16%)

Table 6: Type sketches: properties are annotated with part of speech; log-
likelihood is the concept-property association score computed as described
in the text; types are suffixed with position of concept in relation, and only
types accounting for at least 10% of the distribution are presented.

Thanks to type sketches, StruDEL can be tuned to different semantic
tasks (e.g., in a telic quale task, one could pick only properties with for as a
prominent type in the sketch). However, here we just use them as a filtering
device: We weed out from the model those concept-property pairs whose
dominant type in the sketch is not among the top 10 most common types in
the whole StruDEL output list.

We created a StruDEL semantic space using the 542 concepts of McRae
et al. (2005) as targets. Model statistics were extracted from the large, Web-
derived ukWaC corpus (about 2.25 million tokens).7 Notice that in a series of
preliminary clustering experiments we also trained the SVD model on these
data. However, ukWaC-based SVD performed systematically worse than
BNC-based SVD (StruDEL’s pattern extraction component probably acts as
a “junk filter”, that makes this model more robust to the noise inherent to
Web data, whereas SVD, taking any context into account, is not as robust).

Given that StruDEL is explicitly designed to represent concepts in terms
of their properties, the evaluation conducted here is entirely straightforward:

7http://wacky.sslmit.unibo.it
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we pick and analyze the top 10 properties (ranked by log-likelihood ratio and
filtered by common type as described above) of each target concept.

The top 5 properties of car for StruDEL are presented (without type
sketches) in Table 7.

Concept Top properties Property types Log-likelihood
car drive activity (sa) 1795.4

driver participant (sp) 1329.7
park activity (sa) 985.4
road location (sl) 839.3
garage location (sl) 704.3

Table 7: Top 5 properties for the concept car in StruDEL, together with
their semantic types and association strength measured by log-likelihood.

4 Property Analysis

4.1 Design and materials

We selected 44 concrete nouns belonging to 6 semantic categories from the
feature norms in McRae et al. (2005): 4 categories of natural entities (birds,
ground animals, fruits8 and greens) and 2 categories of artefactual entities
(vehicles and tools). We assigned the nouns to their category, since no classi-
fication was available in the norms. The complete list is reported in Appendix
A. The mean frequency of the nouns in the BNC is 3,320 (σ = 5,814). The
noun with the lowest frequency is chisel (233) and the one with highest fre-
quency is car (35,374). ANOVA revealed no significant difference between
the six semantic categories with respect to the log-frequency of their elements
(F = 1.0964, p = 0.3784). We then extracted the top 10 properties associ-
ated with each noun in NORMS, ESP, SVD and StruDEL, obtaining 1,727
distinct concept-property pairs (some pairs are repeated across spaces, and
some concepts are associated with less than 10 properties in ESP).

Analyzing the specific properties associated to the concepts would seem
the most straightforward way to compare the property spaces. However, this

8All fruit names in the set could denote the corresponding trees, but at least from the
NORMS responses it is clear that the single fruit sense is more salient (a cherry is red and
sweet, etc.).
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solution proved not to be viable in practice. In fact, in preliminary experi-
ments with direct properties, the overlap among human and computational
models was never above 21%, and the correlation among ranks of overlap-
ping properties was not above 0.16.9 These low values are partially due to
genuine differences among spaces, but they are also often due to normaliza-
tion problems. For example, if one space lists noisy as a salient property
of helicopters, whereas another space includes loud, it is extremely hard to
determine by automated means that these are different lexicalizations of the
same property. Moreover, an analysis at such a granular level would not
allow us to see the generalizations in the kinds of properties that different
spaces assign to different concept categories.

These considerations prompted us to compare the property spaces at a
more abstract level, i.e., at the level of semantic types. Therefore, the prop-
erties extracted from ESP, SVD and StruDEL were classified according to
the hierarchical coding scheme used in McRae et al. (2005). For NORMS, we
simply adopted the classification available in McRae et al. (2005) (cf. Section
2). The classification (reported in Appendix B) consists of an “ontology” of
property types organized under 4 main classes:

• category (c) – properties providing taxonomic information about a tar-
get concept (e.g., its superordinate concept);

• entity (e) – properties describing an entity’s, internal and external com-
position, typical behaviour, etc.;

• situation (s) – properties referring to aspects of the contextual situation
in which an entity may appear (e.g., typical function, other entities co–
occurring in the same scene, actions performed on an entity, typical
location, etc.);

• introspective (i) – properties describing a subject’s mental or affectional
state towards an entity.

A special category Out has been added to the original scheme, to mark
those cases in which the property is not prototypically related to the tar-
get concept. Obviously, this class never occurs with the properties extracted

9We would like to thank Brian Murphy for kindly providing us with these data.
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from NORMS. Conversely, Out cases are variously attested in the other prop-
erty spaces, mainly as a consequence of the computational processes used to
generate them.

The concept-property pairs from different spaces were merged before an-
notation, to avoid biases coming from our a priori expectations about the
models. Moreover, to minimize differences between the annotation of McRae
and colleagues and ours, we adopted their labels for pairs in their database
and present in other spaces as well and, more in general, we looked at the
choices made in their database as our main source of guidance and annotation
policies.

We independently annotated each concept-property pair, and discussed
all the cases of disagreement. After a few rounds of training in applying the
classification scheme to random samples extracted from the concept-property
pair set, we decided to merge synonym, coordinate and subordinate proper-
ties under the common type coordinate (cc). This change was prompted by
the complexity of discriminating between these fine-grained property types
out of context (is tiger a hyponym or a co-hyponym of cat?), potentially
resulting in coding inconsistencies.

Of course, several classification decisions were rather difficult. Often these
difficult choices cut across the main classes of the ontology. For example, are
bowls and pans coordinates (cc) or situationally associated entities (se)?
Is cutting the function of scissors (sf ) or their typical action (“behaviour”:
eb)? Unfortunately, the ontology misses natural classes cutting across the
proposed major categories, such as “related entities” – that can be taxonom-
ically related (cc) or situationally related (se) – and “activities” (eb, sa, sf ).
Our analysis will focus more on such natural classes – that let important
generalizations about the nature of different spaces emerge – than on the
high level categories of the ontology shown above.

4.2 Data cleaning

Out cases were unequally distributed, accounting for 30% of the properties in
ESP, 11% in SVD and 7% in StruDEL. We attribute the over-representation
of Out in ESP to the fact that often ESP pictures describe complex scenes.
For example, sky comes up as one of the top properties of elephants since
they are more likely to be photographed outdoors. Having ascertained this,
we looked at whether the distribution of Out cases across categories (ground
animal, fruit, etc.) changed from property space to property space. A logis-
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tic regression with concept category, property space and their interaction as
factors and Out responses as independent variable showed that Out is sig-
nificantly (p < 0.01) more likely in ESP than in SVD or StruDEL, and that
tools are significantly (p < 0.05) more likely to trigger Out responses than
the other concept types (probably because they occur almost by definition in
complex scenes). Importantly, there is no significant interaction. Thus, we
can remove the Out cases from the analysis without inserting a bias in the
model comparison.

In order to avoid sparseness problems and to simplify the analysis, we
decided to ignore rarely used property types. Choosing a cut-off point was
easy, since we observed a large interval between property types eb, that occurs
85 times in total across the spaces, and sp, that occurs 36 times only. Thus,
we removed the latter and all the rarer properties, i.e.: eae, eci, em, eq, esi,
esys, ew, ie, in, io, sev, sp, st (refer to Appendix B for the codes). The full
frequency table, including the rare types, is presented in Appendix C.

4.3 General distribution of properties

We first look at the overall distribution of property types across property
spaces. Table 8 reports X2 values computed on pairwise space-by-property
contingency tables. The smaller the value, the better the fit between two
spaces in terms of property type distribution (none of the fits is particularly
good in absolute X2 terms, but we are interested in relative comparisons).

NORMS ESP SVD StruDEL

NORMS - 144 431 208
ESP 144 - 140 143
SVD 431 140 - 261
StruDEL 208 143 261 -

Table 8: Pairwise X2 fits among spaces

The first interesting datum is that ESP is (comparatively) close to each
of the other spaces. As we will see below, ESP looks like a sort of “av-
erage” model with no single property type that is seriously over- or under-
represented with respect to the other spaces. To the extent that we think that
all other spaces have something going for them, this makes ESP rather at-
tractive as a “balanced” space (keep in mind, however, that we are analyzing
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a “cleaned” version of the ESP space, that would otherwise be characterized
by about 1/3 Out cases: see 4.2 above). ESP is similar to NORMS in that it
is based on human-elicited data; however, ESP concept-by-property charac-
terizations are implicit in patterns of co-occurrence of words in descriptions
of random images and have to be extracted with distributional techniques
similar to those used for corpora. This double nature gives ESP an inter-
mediate status among property spaces. Interestingly, ESP is closer to both
SVD and StruDEL than the two corpus-based models are to each other.

Strikingly, StruDEL has a better fit to NORMS than to SVD, the lat-
ter being the “outlier” space, the one most distant from both NORMS and
StruDEL. We have here an argument for StruDEL as a better approximation
to the human property space. This is not surprising, given that StruDEL,
unlike SVD, was designed to capture properties. More importantly, this re-
sult warns against treating “corpus-based” models as a monolithic whole,
assuming that, no matter how much they differ, these differences will not
be as large as those between humans and distributional models. The data
in Table 8 show clearly that this is not the case. Any conclusion one might
reach about a specific corpus-based model will not necessarily apply to other
corpus-based approaches as well.

We take now a closer look at the property types that characterize each
space using the summary in Figure 1. This is a mosaic plot (Meyer et al.
2006) that visualizes the property-space-by-property-type contingency ta-
ble through rectangles whose areas are proportional to observed frequencies.
Each row represents a property space. The columns correspond to property
types, with type labels at the top of the plot and redundantly coded inside
cells that are large enough to allow this (if the cell is too narrow, its prop-
erty type must be inferred from the list at the top of the plot and/or by the
labels of the surrounding cells: for example, the second rectangle of the SVD
row represents the SVD-by-ch count). Grey shadings are used to highlight
strongly over- or under-represented cells (Zeileis et al. 2005); in particular,
cells with absolute Pearson residuals (quantifying the contribution of a single
cell to the X2 statistic) between 2 and 4 are light grey, and cells with Pearson
residuals above 4 are dark grey (Pearson residuals approximate a standard
normal distribution, thus the 2 and 4 thresholds correspond, approximately,
to 0.05 and 0.0001 significance levels).

Looking at NORMS first, we notice the relatively high frequency of ex-
ternal components (ece) and surface properties (ese), and the almost com-
plete lack of coordinate (cc) and situationally related (se) entities. External
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Figure 1: Distribution of property types across property spaces.

parts (like the wheel of a car) and surface properties (like the fact that a
banana is sweet and yellow) are obviously perceptually important character-
istics of concrete concepts, and they are almost completely missed by our
corpus-based models. This suggests an important line of research in improv-
ing such models, perhaps incorporating visual cues into the distributional
statistics (the ESP space does not have a similar problem). Coordinate and
situationally related entities, on the other hand, might be triggered by free
association tasks (dog in response to cat) but they are unlikely properties in
a concept description (dog as a characteristic property of cat). In this case,
the problem is mainly with the SVD space, where cc and se are by far the
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most common property types. Interestingly, in this respect StruDEL is the
closest model to NORMS (having a lower number of coordinate and related
entities), whereas ESP does have its fair share of these properties (not sur-
prisingly, given that pictures are scene descriptions and scenes are quite likely
to include coordinate – e.g., different kinds animals – and related entities –
e.g., spoons and bowls). Another similarity between NORMS and StruDEL
pertains to the hypernym (ch) and entity behaviour (eb) properties, that are
well attested in these models only. Both functions (sf ) and locations (sl)
are well represented in NORMS as well as ESP and StruDEL, whereas SVD
under-represents both.

It is intriguing that situated categories (sa, se, sf, sl) account for about
one fourth of the NORMS properties, in a very good match with what has
been reported by Wu and Barsalou (submitted). All other spaces have a
higher proportion of situated properties. Still, given the considerations we
made in Section 4.1 on the spurious nature of high level categories such as
situation, we are not sure of how meaningful this observation really is. For
example, SVD features mostly se’s, that are arguably closer to “categorical”
property cc than to situational property sf – function – that is instead more
typical of ESP and StruDEL.

Turning now to ESP, the plot confirms that this is in many respect the
“average” space, with no cells that deviate from the expected values in a
highly significant way. The most common types are those that are useful to
describe an object in a photographic context: coordinate and related entities
(cc and se), external parts and properties (ece, ese), location (sl). Interest-
ingly, the function of objects (sf ) is also well represented (perhaps scenes
captured in pictures tend to show objects engaged in their characteristic
function: e.g., bottles are more likely to appear in scenes where somebody
is drinking?). Other “activity” properties (eb and sa), on the other hand,
are almost absent. This might be due to the fact that entity behaviours
and activities will often not be captured by static pictures, although this
claim deserves further investigation (it is not hard to imagine, say, pictures
of somebody training a dog or driving a car). ESP is also under-representing
hypernyms (ch), which might be explained by the contingent and visual na-
ture of salient information in pictures (one picture might be described as a
brown dog wearing socks, but the fact that the dog is an animal would not
add much to the picture description).

Coming to the computational models, as we said, SVD is clearly the
outlier here, with most of its properties being related entities – either taxo-
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nomically related (cc: dog and cat) or situationally related (se: spoon and
bowl). This is not surprising given that SVD does so well in synonym detec-
tion tasks (synonyms are the limiting case of taxonomic relatedness). SVD
neighbours (that we are interpreting as properties) are based on paradigmatic
similarity, i.e., the tendency to occur in the same linguistic contexts. How-
ever, a concept (say, dog) and its properties (say, tail) rarely occur in exactly
the same narrow context: they will rather occur near each other. In future
studies, we would like to check whether a SVD model based on larger context
windows (dozens of words, or whole documents), and thus exploiting infor-
mation from a wider syntagmatic span, can capture other kinds of properties
beyond related entities.

StruDEL presents a more balanced property space, with counts com-
parable to those in NORMS for hypernyms (ch), typical behaviours (eb),
function (sf ) and locations (sl). Like NORMS, StruDEL avoids coordinates
(cc) and, to a lesser extent, situationally related entities (se). On the other
hand, StruDEL misses external components and properties (ece, ese) almost
completely. An interesting feature of this model is how it is the one that high-
lights functional/activity properties the most: eb, sa, sf. This is probably
due to the fact that StruDEL includes rules that specialize in the extraction
of properties expressed by verbs from corpora.

To conclude, the previous analysis has taken NORMS as the de facto
gold standard on which to evaluate the other spaces. However, the fact
that different spaces specialize in different kinds of properties (and, with the
exception of ESP – that has a sizable Out problem – they produce relevant
kinds of properties) is in other respects very positive. In particular, we can
use the models/spaces in a complementary way in order to build a rich and
multi-faceted view of human semantic cognition.

4.4 Properties of different categories of concepts

The distribution of property types across concept classes can be best ob-
served in Figure 2, that contains association plots between property types
and concept categories for each property space. Association plots (Meyer
et al. 2003) represent the pattern of deviation from independence between
two categorical variables by visualizing the table of Pearson residuals derived
from their contingency table, thus showing the net contribution of each cell
to the global X2 statistic. Rectangles have height proportional to the corre-
sponding Pearson residual. The sign of the residual – i.e., whether a cell is
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over- or under-populated – is coded by the position relative to the baseline.
Width is proportional to the square root of the expected frequencies, so that
the areas of the rectangles are proportional to the non-normalized difference
between observed and expected values. The most important information for
our purposes is encoded in the heights, that represent, for each space, the
degree to which the observed frequencies of property types for a concept cat-
egory depart from the counts expected given the overall distribution of the
space (i.e., departures from the space-specific distributions depicted in the
rows of Figure 1). Like in Figure 1, the shades of grey of the rectangles cor-
respond to Pearson residuals with absolute values larger than 2 (light grey)
and 4 (dark grey) respectively. We will concentrate our analysis on such large
residuals, cueing the most salient properties of each concept category.

The association plot for NORMS shows a major contrast between animals
and tools, with the latter being mainly characterized by functional proper-
ties (sf ), that are instead strongly under-represented in birds and ground
animals. Zooming in on the natural domain, animals are more reliant on
properties referring to their typical behavior (eb), which are instead below
expected distribution with vegetable categories. The latter concepts do not
behave homogeneously. Fruits are mostly characterized by properties refer-
ring to their external surface, while vegetables show a significant dominance
of properties referring to typical activities (typical ways of cooking and eating
them, e.g., boiling for potatoes, etc.) and to associated entities. Interest-
ingly, vehicles are the only category that is not identified by any specific
property type (except for a weak presence of eb properties, such as flying for
helicopter).

We can compare the distribution of property types by concepts classes
in NORMS with the data reported in Vinson et al. (2003), resulting from
the analysis of semantic feature norms elicited for a set of objects and action
concepts. Vinson et al. (2003) claim that artifacts have significant more
functional features than natural concepts. Although they use a different
property classifications scheme, their results are strikingly similar to NORMS
with respect to tools and its mirror image represented by animals. Vinson
et al. (2003) also observe that visual features (i.e., referring to the sense of
vision) are more significantly associated with animals, fruits and vegetables.
These results are partially confirmed in NORMS. The ese properties that
dominate fruits actually refer to external, visible features. On the other hand,
we have said above that animals are instead characterized by behavioral
properties. McRae et al. (2005) cross-classified the properties in their norms
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Figure 2: Positive and negative deviations from the expected value of prop-
erties across concept categories, for the four models.
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with an orthogonal taxonomy referring to the brain area where properties
are plausibly computed. Interestingly, in this parallel classification scheme
most of the eb properties appearing with our animal concepts are marked as
visual.

The preferred association of functional properties with tools appears also
in ESP, together with their symmetric under-representation in animals. How-
ever, now sf is not the only hallmark for tools, which are strongly character-
ized by associated entities too (typically, objects co-occurring with the target,
e.g., knife with spoon). Prima facie, this is not surprising, since surely tools
often appear in pictures together with other objects (take for instance pen
and paper). However, this can not be the only explanation, since, in ESP
images, entities belonging to any concept categories appear in scenes with
other objects. Yet, it seems that players single out associated entities par-
ticularly with tools (where there might be a stronger functional link between
the concept and the associated entities).

An interesting parallelism between ESP and NORMS is the salience of eb
with animals, although now association is limited to birds, while ground ani-
mals show a preference for being described in terms of their parts. Fruits and
greens present patterns that are much different from to the ones in NORMS.
Both classes are characterized by the over-representation of their hypernyms
(ch), which do not play a significant role in distinguishing any category in
NORMS. Moreover, now vehicles appear to be strongly characterized by lo-
cation features (e.g., road for cars) and by typical activities (e.g., driving).
Overall, ESP shows very distinct distributions of properties across concept
categories. This is particularly interesting in the light of the ways in which
ESP labels are generated. In the ESP Game, labels are the result of an au-
tonomous and spontaneous parsing of the scene carried out by two players.
In scanning the scenes in the pictures, it seems that concept categories make
different property types be more salient for players that must converge on a
choice.

Coming to the corpus-based property spaces, we first notice a striking
parallelism between StruDEL and NORMS, especially with respect to the key
role of functional features with tools and its symmetric under-representation
with animals, which instead are again globally characterized by behavioral
properties. This is an important parallelism, also because the animal/tool
distinction is one for which there is some of the most robust neuro-imaging
evidence (Martin 2007). Other two elements of similarities concern the fact
that taxonomic properties do not play a significant role with any category,
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and the association of vegetable concepts with typical activities. Differently
from NORMS, se plays an important role in the StruDEL representation of
tools, together with sf, and in close parallelism with ESP. StruDEL is also
similar to the latter with respect to the prominence of location properties with
vehicles. A major contrast between StruDEL and the two human-generated
property spaces is instead given by the fact that no category is specifically
associated with either surface properties or parts, surely a consequence of the
fact that these types of properties are very rarely captured by this model.

Similarly to what we noticed in Section 4.3, the property-by-category
distribution also reveals that StruDEL is more strongly correlated with the
human-property spaces than with SVD, which is confirmed as a sort of outlier
under many respects. For instance, SVD is the only model to characterize
birds with surface properties, and the robust association of hyponyms with
fruits we observe in ESP is even stronger in SVD. Conversely, this model goes
together with ESP and StruDEL in having locations as significantly related
to vehicles. The rather “excentric” character of the SVD property space is
however best revealed by the fact that, while the other models (although to
different extents) assign a prominent role to behavioral properties for animals
and to functional ones for tools, neither of these correlations is observed in
SVD. Tools are now strongly characterized only by associated entities, while
sf plays a significant role with vehicles. We already observed in the mosaic
plot of Figure 1 the general bias of SVD towards paradigmatic associations,
to which se properties belong (together with cc). The interesting fact now is
that this bias towards se is not equally distributed among the various concept
categories. Like ESP, SVD tends to single out associated entities especially
with tools. This points towards a more sophisticated interplay between the
general tendency of SVD to highlight paradigmatic associations, and the
specific semantic organization of particular conceptual categories.

To conclude, once more we found that both similarities and divergences
cut across the human-/corpus-generated divide. This points, again, to a
certain complementarity between models, where it is not always necessarily
the case that NORMS is the “best” one. For example, ESP and StruDEL,
very sensibly, assign typical location ad a salient property of vehicles, whereas
this is completely missed by NORMS.
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5 General Discussion

It is now time to go back to the main issue that we raised at the outset
of our work, i.e., to what extent the linguistic expressions co-occurring with
a word are correlated with the properties that compose its concept. The re-
sults of our analyses confirm that there is no easy answer to such a question.
The reasons depend both on the cognitive construct of property as emerging
from human-elicited data, and on the behavior of the computational models
used to approximate such a notion. The comparison between NORMS and
ESP has revealed important parallelisms, but also many equally salient di-
vergences, both at the level of global distribution of property types, as well
as with respect to specific concept categories. This fact suggests important
differences within human property spaces, and warns against taking a single
or specific set of human generated data as “the” gold standard with which
distributional models can be compared. A viable hypothesis is that there is
actually no unique human property space, but rather a representational core
that is variously modulated depending on the task, context, medium and
mode of expression, etc.

Similar caveats also extend to corpus-based, distributional models. In
our experiments, two different approaches to carve semantic knowledge out
of corpus-based word distributions have been shown to produce highly differ-
ent semantic spaces, with little if anything in common. These are not simply
alternative ways to acquire semantic information from texts, but they are
rather methods that extract different portions and aspects of the semantic
space. StruDEL has a better fit to NORMS, but the picture becomes more
complex once we also take into consideration the variation within human
models, since ESP appears to be equally distant from both computational
spaces. Great caution should be used when interpreting corpus-based models
as simulations of human semantic space. Since corpus-based models do not
behave uniformly as far as the shape of the semantic space they produce, the
specific way in which they processes corpus data and derived semantic in-
formation must be taken into account. A poor match between corpus-based
data and subjects’ elicitations may be the result of a complex array of fac-
tors concerning the peculiarities of the computationally (and experimentally)
derived semantic space.

In Section 2.3, we reported the result from Wu and Barsalou (submitted)
that property spaces generated by subjects in neutral conditions are more
strongly correlated to property spaces generated by subjects instructed to
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use mental images than to property spaces generated by subjects instructed
to use word associations. Wu and Barsalou take this as evidence support-
ing the hypothesis that the human property space is not “amodal” – like
the one based on simple word associations – but it is instead inherently
grounded on perceptual modalities, through the system of perceptual simu-
lations of concept instances that are run by subjects in producing properties.
The results of our experiments warn against drawing similar straightforward
conclusions. First, we saw in Table 8 that ESP, a strongly “perceptually
grounded” space, given that labels are generated by describing pictures,
is equally close to NORMS as it is to SVD and StruDEL, that have all
the hallmarks of “amodal” property spaces, based purely on corpus-derived
word associations. Moreover, the analysis of Figure 1 and, especially, Fig-
ure 2 suggests that there are important similarities between NORMS and
StruDEL. This raises the question of to what extent property sets generated
by subjects are determined by statistically significant correlations between
linguistic structures to which subjects are exposed to in their communicative
tasks. Our experiments do not allow us to advance any further hypothesis
without the risk of being purely speculative. Yet, they suffice to highlight
the complexity of the relationship between computational linguistic and cog-
nitive research, confirming at the same time all the potential offered by their
encounter.

Having conducted the qualitative analysis we presented here, we would
like, in future work, to see how the different natures of the models lead to
different performance in tasks such as unsupervised clustering by concept
category, modeling free association or synonym detection. Given the almost
complementary nature of SVD and StruDEL, for example, we would not be
surprised to find out that they succeed in modeling different aspects of se-
mantic cognition. At a more technical level, we would like to experiment with
a SVD model derived with larger context window, to give more weight to syn-
tagmatic, as opposed to paradigmatic, neighbours. Finally, our analysis here
has ignored possible effects due to specific concept categories (say, cherries
or cars) and property types (say, red or barking). We are currently exploring
the possibility of using multi-level modeling techniques for an analysis that
takes these effects into account.

Despite the need for this important further work, we hope that the re-
sults we reported here contributed to a better understanding of how proper-
ties shape conceptual knowledge both in human tasks and in computational
models.
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A Concepts and concept categories

Target items used for property analysis, together with their categories

Word Semantic Category

chicken bird-animal-natural
duck bird-animal-natural
eagle bird-animal-natural
owl bird-animal-natural
peacock bird-animal-natural
penguin bird-animal-natural
swan bird-animal-natural
cat groundAnimal-animal-natural
cow groundAnimal-animal-natural
dog groundAnimal-animal-natural
elephant groundAnimal-animal-natural
lion groundAnimal-animal-natural
pig groundAnimal-animal-natural
snail groundAnimal-animal-natural
turtle groundAnimal-animal-natural
banana fruit-vegetable-natural
cherry fruit-vegetable-natural
pear fruit-vegetable-natural
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Word Semantic Category

pineapple fruit-vegetable-natural
corn green-vegetable-natural
lettuce green-vegetable-natural
mushroom green-vegetable-natural
onion green-vegetable-natural
potato green-vegetable-natural
bottle tool-artifact
bowl tool-artifact
chisel tool-artifact
cup tool-artifact
hammer tool-artifact
kettle tool-artifact
knife tool-artifact
pen tool-artifact
pencil tool-artifact
scissors tool-artifact
screwdriver tool-artifact
spoon tool-artifact
telephone tool-artifact
boat vehicle-artifact
car vehicle-artifact
helicopter vehicle-artifact
motorcycle vehicle-artifact
rocket vehicle-artifact
ship vehicle-artifact
truck vehicle-artifact

B Property classification scheme

Property classification scheme, adapted from Wu and Barsalou (submitted)
and McRae et al. (2005)

Class Property Type Code Example

Taxonomy (c) Coordinate cc cat–dog
Superordinate ch cat–animal
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Class Property Type Code Example

Entity (e) Associated abstract entity eae telephone–information
Entity behavior eb lion–roar
External component ece truck–wheel
External surface property ese banana–yellow
Internal component eci car–engine
Internal surface property esi pineapple–crunchy
Larger whole ew cow–cattle
Made–of em bottle-glass
Quantity eq pear–slice
Systemic feature esys elephant–wild

Situation (s) Associated entity se spoon–bowl
Associated event sev watermelon–picnic
Function sf scissors–cut
Action sa banana–eat
Location sl ship–port
Participant sp boat–fisherman
Time st pineapple–summer

Introspective (i) Cognitive operation io snail–like a slug
Evaluation ie pineapple–delicious
Negation in penguin–cannot fly

C Results

Raw property type counts for each target space

Property Type NORMS ESP SVD StruDEL

cc 3 51 112 13
ch 43 14 16 32
eae 0 0 1 6
eb 37 8 1 39
ece 97 40 13 16
eci 12 5 8 9
em 24 6 1 1
eq 0 0 0 1
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Property Type NORMS ESP SVD StruDEL

ese 57 30 7 9
esi 12 0 1 1
esys 20 0 9 5
ew 0 0 4 5
ie 3 0 1 0
in 3 0 0 0
io 1 0 0 0
Out 0 128 49 27
sa 5 8 26 93
se 8 47 147 43
sev 0 4 8 6
sf 70 37 20 61
sl 28 43 8 44
sp 15 4 7 10
st 1 1 1 1
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