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Abstract

This paper describes the current status of research in Distributional
Semantics looking at the results from the Montagovian tradition stand
point. It considers the main aspects of the Montagovian view as binoculars
to observe those results, in particular: compositionality, syntax-semantics
interface, logical words and entailment. To this end, it reviews some work
that aims to tackle those issues within the Distributional Semantics Mod-
els and tries to highlight some open questions formal and distributional
semanticists could address together.

Credits: Some of the material in the background section is based on distri-
butional semantics talks by Marco Baroni, Stefan Evert, Alessandro Lenci and
Roberto Zamparelli.
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1 Introduction

This paper is not a research paper, no new results are reported. Its aim is
to bridge two research communities working on related questions using differ-
ent but compatible methods in order to profit of each other results. The main
question they share is how we can formally capture natural language semantics.
In other words, how can a computer processes linguistic expressions like “Two
men play a game”, “Some people play chess” and “Some people play music”
and realize that the second sentence is semantically similar to the first, but not
to the last one – e.g. the first two sentences can be the descriptions of the same
image whereas the last one describes a different event, even though it shares
several words with the other sentences. To answer this question, formal seman-
ticists employ a logic framework and exploit its reasoning apparatus, whereas
distributional semanticists look at how natural language is used by inducing
statistical based representations and exploiting vector semantic space tools. Of
course, none of the two communities has reached a final answer, but both have
discovered interesting aspects of natural language that can possibly converge
within an integrated enterprise. To reach our aim, we will first briefly introduce
the core concepts at the heart of the two approaches (Section 2) and then look
at distributional semantics with the eyes of formal semanticists (Section 3).

2 Background

In this section, we describe our standing point by briefly introducing the core
concepts of Logic and its application to natural language analysis. We will then
look at Distributional Semantics from these formal semantics pillars.

2.1 From logic to language: The Montagovian pillars

In Logic, the interpretation of a complex formula depends on the interpretation
of the parts and of the logical operators connecting them (compositionality).
The interpretation of the logical operators determines whether from a set of
propositions a given proposition follows: {ψ1, . . . ψn} |= φ. The entailment
|= is said to be satisfiable when there is at least one interpretation for which
the premises and the conclusion are true; falsifiable when there is at least one
interpretation for which the premises are true and the conclusion is false; and
valid when the set of interpretations for which the premises are true is included
in the set of interpretations for which the conclusion is true (logical entailment.)
These two aspects have been used to formalize natural language meaning too.
The starting point has been Frege’s solution to the following puzzle: There is the
star a called “venus”, “morning star” and “evening star” that are represented
in First Order Logic (FOL) by venus′, morningst′, eveningst′: [[venus′]] = a,
[[morningst′]] = a and [[eveningst′]] = a. a is the meaning (reference) of
these linguistic signs. Checking whether it is true that (i) “the morning star
is the morning star” or that (ii) “the morning star is the evening star” ends
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up checking that (i) [[morningst′]] = [[morningst′]] and (ii) [[morningst′]] =
[[eveningst′]], both of which reduce to checking a = a. But checking whether
(i) “the morning star is the morning star” or that (ii) “the morning star is
the evening star” cannot amount to the same operation since (ii) is cognitively
more difficult than (i). Frege solved this puzzle by claiming that a linguistic sign
consists of a Bedeutung (reference), the object that the expression refers to, and
a Sinn (sense), mode of presentation of the reference. Moreover, he claimed
that natural language meaning can be represented by a logical language.

Following Frege, formal semanticists’ aim has been to obtain FOL repre-
sentations of natural language expressions compositionaly. A crucial contribu-
tion to this research line has come from Montague (Montague, 1970), hence we
can refer to the general framework as the Montagovian view. Formal seman-
ticists have wondered what the meaning representation of the lexical words is,
and which operation(s) put the lexical meaning representation together. The
most largely shared view takes syntax to drive the order of composition. In
particular, to assemble the syntactic structure Montague employed Categorial
Grammar (CG) in which syntactic categories are seen as functions – A\B (or
B/A), a function that wants an argument A on the left (resp., on the right) to
return an expression of category B – and their composition as function applica-
tion. The Categorial Grammar view has been further elaborated into a Logical
Grammar by Lambek (1958), the general framework is known as Type Logical
Grammar (Moortgat, 1997; Morrill, 1994). In it the connection between syntax
and semantics has been tied up at both lexical and grammatical level as we will
better see in the sequel. In brief, the core components of the Montagovian
framework are:

Compositionality The meaning representation of a phrase depends on the
meaning representation of its parts and the way they are put together.

Syntax-semantics interface The meaning representation assembly is guided
by the derivational structure and a tight connection must be established between
domains of interpretation and syntactic categories. This connection can be cap-
tured by defining a mapping between semantic types and syntactic categories.

Logical words and entailment Entailment between phrases consisting only
of content words is model dependent (it corresponds to satisfiability), entail-
ment between phrases consisting also of logical (grammatical) words is model
independent (it corresponds to validity.)

In the following, first we introduce the general background at the heart of
Distributional Semantics Models (DSMs), then we zoom into those models that
account for compositionality in the light of the main issues summarized above
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2.2 Distributional Semantics Models

As with any framework, in order to understand and appreciate the results
achieved, the main research questions of the people working on the framework
should be clear. For DSMs we can say the key questions have been the following
ones: 1.) What is the sense of a given word?; 2.) how can the sense be induced
and represented? and 3.) how do we relate word senses (synonyms, antonyms,
hyperonym etc.)?1 Well established answers supported by several evaluations
are 1.) The sense of a word can be given by its use, viz. by the contexts in which
it occurs; 2.) it can be induced from (either raw or parsed) corpora and can be
represented by vectors (viz., tensors of order one); 3.) vector cosine similarity
captures synonyms (as well as other semantic relations).

Today DSMs found their inspiration in ideas of the Fifties: First of all,
Wittgenstein (1953) claims that word usage can reveal semantics flavor; Harris
(1954) observed that words that occur in similar (linguistic) context tend to
have similar meanings, Weaver (1955) looked at the applied side of these ideas
by considering co-occurrence frequency of the context words near a given target
word to be important for word sense disambiguation in machine translation
tasks; and the famous slogan of the framework “you shall know a word by the
company it keeps” is due to Firth (1957). Finally, Deerwster et al. (1990) put
these intuitions at work. To easily capture the main intuition behind Firth’s
slogan, we can consider the example by McDonald & Ramscar (2001) who show
how everyone can get the meaning of a made-up word like wampimuk by looking
at the contexts in which it is used, for instance “He filled the wampimuk with
the substance, passed it around and we all drunk some” and “We found a little,
hairy wampimuk sleeping behind the tree” would suggest that wampimuk is a
liquid in the first case and an animate thing in the second. Based on these
kinds of observations, people have developed formal DSMs, implemented and
evaluated them on several semantic tasks.

Definition A Distributional Semantics Model is a quadruple 〈B,A, V, S〉, where:
B is the set of “basis elements” – the dimensions of the space; A is a lexical
association function that assigns co-occurrence frequency of target words to the
dimensions; V is an optional transformation that reduces the dimensionality of
the semantic space; and S is a similarity measure. The results of the model
can be depicted for instance by the picture below taken from Mitchell & Lapata
(2010).

1The use of “sense” (as in Frege terminology) is not standard and may found opponents,
but we believe it’s useful to highlight the different perspective natural language is looked at
within distributional and formal semantics models.
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Toy example To better understand the main points, let us take as toy ex-
ample vectors in a 2 dimensional space, such that B = {shadow, shine}; A=
co-occurency frequency; and S the Euclidean distance. Let’s take as target
words: moon, sun, and dog and consider how often they co-occur with the basis
elements:

The Euclidean distance shows that sun is “closer” to moon than to dog.
The two dimensional space representation give −−−→moon=(16,29), −−→sun= (15,45),
−→
dog=(10,0) that live together in a space representation (a matrix, dimensions
× target-words): [

16 15 10
29 45 0

]
The most commonly used representation is the transpose matrix: target-

words × dimensions:

shine shadow
−−−→moon 16 29
−−→sun 15 45
−→
dog 10 0

The dimensions are also called “features” or “contexts”.
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Standard DSMs In standard DSMs, words are taken to be all in the same
space; the space dimensions are the most k frequent words, minus the “stop-
words”, viz. high-frequency words with relatively low information content, such
as grammatical words (e.g. of, the, and, them, . . . ). Hence, they may be around
2k-30K or even more; and they can be plain words, words with their part of
speech (PoS), words with their syntactic relation. Hence, a text needs to be:
tokenized, normalized (e.g., capitalization and stemming), annotated with PoS
tags (N, J, etc.), and if required also parsed (to extract the syntactic relations).
Instead of plain counts, the values can be more significant weights of the co-
occurrence frequency: tf-idf (term frequency (tf) × inverse document frequency
(idf)): an element gets a high weight when the corresponding term is frequent in
the corresponding document (tf is high), but the term is rare in other documents
of the corpus (df is low, idf is high.) (Jones, 1972); or PMI (pointwise mutual
information): measure how often two events x and y occur, compared with what
we would expect if they were independent (Church & Hanks., 1989). Finally, the
many dimensions can be reduced so to obtain a matrix of a lower dimensionality
(a matrix with less – linearly independent – dimensions) by either Singular
Value Decomposition (SVD) that generalizes over sparser surface dimension by
capturing “latent dimensions” or Random Indexing that improves efficiency by
avoiding constructing too large matrices when not necessary.

Observation I We can say that formal semanticists focused on “meaning” as
Bedeutung, whereas distributional semanticists studied “meaning” as Sinn.

Observation II We can say that formal semanticists have been interested
in entailment as validity (entailment driven by logical words), whereas distribu-
tional semanticists have looked more to entailment as satisfiability (ISA-relation
between content words).

2.3 Distributionality from the Montagavian view

Below we review some state-of-the art approaches to DSM beyond lexical mean-
ing in the light of the Montagavian pillars and the type-logical view that has
been developed based on it. In particular, we will briefly look at Mitchell &
Lapata (2010); Coecke et al. (2010); Socher et al. (2012) and more in depth
at Baroni et al. (In press). The reader interested in a complete overview of
DSMs is referred to Turney & Pantel (2010).

Compositionality All the work under consideration tackle the issue of com-
positionality and adopt the assumption that the meaning of the whole depends
on the meaning representation of its parts. Mitchell & Lapata (2010) take all
constituents to be represented by vectors which combine together to produce a
new vector and investigate possible vector composition operations; they focus
their evaluation of such operations by looking at small phrases consisting of
a head and a modifier or complement, and consider the class of additive and
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multiplicative operations to carry out the composition. As we will see below,
the others instead use also tensors of order higher than vectors for capturing
how a word can act on the word it composes with.

Syntax-Semantics interface The importance of taking the relation between
the semantic composition and the syntactic structure into account is also dis-
cussed in all the work, though it is implemented in different ways and the
strength of the connection varies from the very soft relation presented in Mitchell
& Lapata (2010) and Socher et al. (2012) to the very tight one considered in Co-
ecke et al. (2010); Baroni et al. (In press).

Mitchell & Lapata (2010) take syntax into account at least theoretically by
presenting a flexible framework that covers under its umbrella several proposals.
They consider the possibility of making the composition operation to depend on
the syntactic relation. Formally, they define the result of the composition to be
p = f(u,v, R,K) where R and K stand for the syntactic relation and the back-
ground knowledge, respectively. However, to simplify the implementation of the
model, in practice they ignore K as well as the variety of function compositions
based on the different syntactic relations. Moreover, they assume that the value
vector p lies in the same space as u and v. This essentially means that all syn-
tactic categories correspond to semantic space of the same dimensionality. As
the authors notice, the simplification may be too restrictive as it assumes that
verbs, nouns, and adjectives are substantially similar enough to be represented
in the same space, but it makes the implementation computationally simpler
and the approach more feasible. Theoretically, they mention the possibility of
considering the composition function to be asymmetric, for instance, as the ac-
tion of a matrix, U, representing one constituent, on a vector, v, representing
the other constituent: p = Cuv = Uv – as the authors notice, this is essen-
tially Baroni & Zamparelli (2010)’s approach to adjective-noun composition to
which we return below. Similarly, Socher et al. (2012) take a softer approach
to the syntax-semantics interface and consider all words to have the same type
of representation: a matrix and a vector. The matrix component expresses the
ability of (any) word to act on another when composing with it, each matrix
word is composed with the lexical vector of the other word, the result of such
composition is still a pair of a vector and a matrix; the vector is obtained by
projecting the two matrix product results to the lexical vector space and the
matrix is produced by projecting the pairing of matrices back to the matrix
space. Hence, the role of the syntax is reduced to the minimum, it just provides
the structure of the composition. We will look at how Coecke et al. (2010) and
Baroni et al. (In press) handle the syntax-semantics interface in Section 3.1

Logical words and entailment As emphasized by P. Bosch in his ESSLLI
’08 talk, research on DSMs has traditionally focused on content words (open
word class) whereas logical words (closed word class), like determiners, coordi-
nation, modals, prepositions have been neglected. However, if we aim to reach
a compositional DSM able to capture the distributional meaning of sentences,
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we might need to encode the contribution of e.g. every and no in the sentences
“few dogs chase cats” vs. “no dog chases cats”. Ed Hovey in his IWCS ’11 talk
discusses his intuitions regarding logical words, like negation of content words
(not hard) and modal alteration of them (possibly hard) and claims that these
expressions cannot be represented by tensors harvested from corpora but that
they should be considered as operators: e.g. negation should negate the values
of the tensors it composes with. Like Bosch and Hovey, we believe that re-
searchers working on DSMs should go beyond lexical meaning and consider also
phrases and sentences (a challenge that has been taken up by several research
groups in the last few years), and we also believe that in this perspective it is
time to consider grammatical words too (a challenge that is mostly overlooked);
however, we raise doubts on Hovey’s claim that considers grammatical words
as pre-defined operators. In our view, the new question the DSM community
might have to answer is whether from a distributional stand point there is a
real distinction between grammatical and content words and if so to what ex-
tend. Do we really need to consider content words as given by their distribution
and the grammatical words as pre-defined or do we instead need to change the
distributional contexts to look at for capturing the meaning of the grammatical
ones? We believe that a correct way to think of the issue should come from the
observation of what leads a speaker to use for instance a determiner instead of
another when expressing similar quantities (for instance, few vs. a few, many
vs. several.) In the sequel (Section 3.2 and Section 3.3), we will review some
preliminary work on this class of words within DSM.

3 The Montagovian pillars within DSM

3.1 Syntax-Semantics interface

Following the type logical view to the syntax-semantics interface, the connec-
tion between the two natural language levels needs to be captured by both the
vocabulary and grammar rules; below we look at these two levels within DSMs.

3.1.1 Syntactic categories and semantic types

In the type-logical view, a first step to establish the tight formal connection
between syntax and semantics is achieved by defining a mapping between syn-
tactic categories and semantic types, based on the assumption that expressions
belonging to the same syntactic categories find their meaning in the same deno-
tational domains and hence receive meaning representations of the same types.
For instance, if one assumes that determiner phrases (category: DP) denote in
the domain of entities (type: e), and sentences (category: S) denotes in the
domain of truth values (type: t), viz. Type(DP ) = e and Type(S) = t, and that
Type(A\B) = Type(B/A) = Type(A) → Type(B), then Type(DP\S) = e → t,
and Type((DP\S)/DP ) = e→ (e→ t).

This idea has been imported into the DSM realm in Clark et al. (2008)
(and in the extended version in (Coecke et al., 2010)) where the authors assign
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to a lexical entry the product between the pregroup category and the vector
in the tensor space, using a mathematical structure that unifies syntax and
semantics. The use of pre-groups as grammar to analyse linguistic structure
traces back again to Lambek (Lambek, 1999, 2004). Clark (2012) discusses
the same framework in terms of multi-linear algebra providing a more con-
crete and intuitive view for those readers not familiar with category theory. At
the level of lexical and phrasal interpretation, (Clark et al., 2008; Coecke et
al., 2010; Clark, 2012) import Frege’s distinction into DSMs by representing
“complete” and “incomplete” expressions as vectors and as higher-order ten-
sors, respectively, and consider the syntax-semantics link established between
syntactic categories and semantic types. For instance, a transitive verb has syn-
tactic category DP r · S ·DP l (that corresponds to the functional CG category
(DP\S)/DP ) and semantic type N ⊗ S ⊗ N , since expressions in DP and S
are taken to live in the semantic space of type N and S, respectively, and the
transitive verb relates these vector spaces via the tensor product (⊗): its dimen-
sions are combinations of those of the vectors it relates. As clearly explained
in (Clark, 2012), the verb vector can be thought of as encoding all the ways
in which the verb could interact with a subject and object in order to produce
a sentence, and the composition (via inner product) with a particular subject
and object reduces those possibilities to a single vector in the sentence space.
Several implementations of this framework have been proposed, e.g., (Grefen-
stette & Sadrzadeh, 2011a,b; Coecke et al., 2012; Kartsaklis et al., 2012), but
the connection between the syntactic categories and semantics types has been
maintained only in Grefenstette et al. (2013).

The mapping between syntactic categories and semantic type is fully empha-
sised and employed in Baroni et al. (In press). In the remaining of the paper, we
will focus on this work. The authors generalize the distinction discussed in Ba-
roni & Zamparelli (2010) between vectors (atomic categories, e.g., nouns) and
matrices (one-argument function, e.g., adjectives) starting, as in the type-logical
view, from defining a mapping from syntactic categories to semantic types, as
specified below.2

Type(a) = Ca (for a atomic)
Type(A\B) = Type(B/A) = CA → CB

In denotational semantics the semantic types indicate the type of the do-
main of denotation (for instance, john is of type e: it denotes in the domain
of entities, De, whereas walks is of type e → t and denotes in the correspond-
ing domains of functions from entities to truth values, De→t); in distributional
semantics Baroni et al. (In press) take types to stand for the semantics space
in which the expression lives, namely the contexts or context transformations.
Words that live in the space of vectors have an atomic type, whereas functional
types are assigned to words that act as space mappings (context transforma-
tions): matrices (that is, second order tensors) have first order 1-argument func-
tional types, third order tensors have first order 2-argument functional types,

2Baroni et al. (In press) adopt the alternative notation: Type(B\A) = Type(B/A) = CA →
CB .
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etc. In general, they assume that words of different syntactic categories live in
different semantic spaces. As it is the case in formal semantics, where nouns
and verb phrases are both functions from entities to truth values, one could
decide that two different syntactic categories are mapped to the same semantic
types – live in the same semantic space. Baroni et al. (In press) take as atomic
categories N (noun), DP (determiner phrase) and S (sentence); their types
are indexed to record the number of dimensions of the corresponding semantic
space: Type(N) = Cni

, Type(DP ) = Cdpj
, Type(S) = Csk – where C stands

for context – whereas the types of the complex categories are obtained by the
definition above.

Again following Montague, Baroni et al. (In press) consider a fragment of
English that represents the variety of tensor composition the DSM should be
able to cover both theoretically and practically. As vocabulary, they consider
words in the syntactic categories listed in the table below. For sake of clarity,
in the table next to the syntactic category we indicate also the corresponding
semantic type as well as the order of the corresponding DS representation. In
the sequel, following the standard practice, we will be using boldface lowercase
letters, e.g., a, to represent a vector, boldface capital letters, e.g., A, to represent
a matrix and Euler script letters, e.g., X , to represent tensors of order higher
than two.

Relative pronouns (RelPr) in subject or object positions should ideally re-
ceive the same syntactic category in CG. This can be done using other con-
nectives besides the traditional functional ones (\ and /), but since the focus
is on the syntax-semantics interface rather than about syntactic issues per se,
the authors adopt the easiest CG solution and consider two syntactic categories:
(N\N)/(DP\S) for subject gap and (N\N)/(S/DP ) for object gap, both map-
ping to the same semantic type.

Lexicon

Syn Cat CG Cat Semantic Type Tensors

N N Cni I vector (1st ord.)
NNS DP Cdpj J vector (1st ord.)
ADJ N/N Cni → Cni I × I matrix (2nd ord.)
DET DP/N Cni → Cdpj J × I matrix (2nd ord.)
IV DP\S Cdpj → Csk K × J matrix (2nd ord.)
TV (DP\S)/DP Cdpj → (Cdpj → Csk ) (K × J)× J (3rd ord.)
Pre (N\N)/DP Cdpj → (Cni → Cni) (I × I)× J (3rd ord.)
CONJ (N\N)/N Cni → (Cni → Cni) (I × I)× I (3rd ord.)
CONJ (DP\DP )/DP Cdpj → (Cdpj → Cdpj ) (J × J)× J (3rd ord.)
RelPr (N\N)/(DP\S) (Cdpj → Csk )→ (Cni → Cni) (I × I)× (K × J) (higher ord.)

(N\N)/(S/DP )

Table 1: Syntax-Semantics interface of an English Fragment

Before going to look at how the relation between syntax and semantics is
captured at the grammar rules level, we will still report some observation re-
garding CG categories within DSMs.
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Empirical Coverage Paramita (2012) has analysed two large corpora, Wikipedia
and ukWaC3 parsed with a Combinatorial Categorial Grammar (CCG) parser (Clark
& Curran, 2007; Honnibal et al., 2007) aiming to understand which type of cat-
egories, hence tensors, are more frequent in natural language structures. From
this analysis it results that in Wikipedia there are around 902M (ukWaC: around
1.8M) tokens belonging to an atomic category (vector); around 632M (ukWaC:
around 1.4M) tokens belonging to a one-argument function category (matri-
ces); around 114M (ukWaC: around 282M) tokens belonging to a two argument
function category (3rd order tensor), and around 189M (uKaWac: 469M) tokens
belonging to a tensor higher than 3; hence the large majority of tokens (around
90% in Wikipedia and 40% in ukaWaC) would be represented by a tensor of the
order discussed in Baroni et al. (In press) and reviewed above.

Learning the vocabulary The vector representations of words belonging
to atomic categories are obtained as explained above by harvesting the co-
occurrence frequency and possibly converting them by means of some weighting
schema. For the distributional functions, Baroni & Zamparelli (2010) propose
to use regression methods. They look at adjective noun phrases, ADJ N, which
again belong to the category of nouns and hence are represented by vectors as
the modified noun. In other words, the distributional function is learned from
examples of its input and output vectors extracted from the corpus; for instance,
the matrices RED will be learned from vector pairs like (army, RED army),
(apple, RED apple), etc. Standard machine learning methods are used to
find the set of weights in the matrix that produces the best approximations
to the corpus-extracted example output vectors when put together with4 the
corresponding input vectors. This method has been generalized to work with n-
argument functions in Grefenstette et al. (2013). In particular, when a function
returns another function as output (e.g., it acts on a vector and generates a
matrix) we need to apply a multiple-step regression learning method, inducing
representations of example matrices in a first round of regressions, and then
using regression again to learn the higher-order function. Grefenstette et al.
(2013) have worked on transitive verbs. A transitive verb such as eat is a third-
order tensor (e.g. (2 × 4) × 4 tensor, that takes an object, a DP represented
by a 4-dimensional vector (e.g., cake) to return the corresponding V P (“eat
cake”, a 2 × 4 matrix). To learn the weights of such tensor, Grefenstette et
al. (2013) first use regression to obtain examples of matrices representing verb-
object constructions with a specific verb. These matrices are estimated from
corpus-extracted examples of<subject, subject verb object> vector pairs (picking
subject-verb-object structures that occur with a certain frequency in the corpus,
in order to be able to extract meaningful distributional vectors for them). After
estimating a suitable number of such matrices for a variety of objects of the
same verb (e.g., “eat cake”, “eat meat”, “eat snacks”), they use pairs of corpus-
derived object vectors and the corresponding verb-object matrices estimated in

3Wikipedia English articles: around 820 million words, and ukWaC: around 2 billion words.
4We will see that the composition operation used is the product.
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the first step as input-output examples in a second regression step, where the
verb tensor components are determined.

CG category based DSMs As we have mentioned above, the dimensions
of standard DSMs have been taken to be words tagged with PoS tags or words
labeled with dependency relations. Differently from this tradition, Paramita
(2012) exploits the richness of the CG categories to build a DSM model har-
vested from the large corpora parsed with the CCG parser mentioned above.
We briefly report the results obtained. The model (CCG-DSM) has the 20K
most frequent CG categories tagged words as dimensions, and the 10K most
frequent nouns, 5K most frequent verbs, 5K most frequent adjectives as target
words. The co-occurrence matrix harvested from the corpus has been converted
by means of different weighting schema and reduced to 300 dimension by SVD.
The model has been evaluated against a noun and verb clustering task as pro-
posed in (Baroni et al., 2008). Interestingly, the CCG-DSM model outperforms
both the one based on plain PoS-tagging and the one based on dependency
relation-tagging in clustering verbs. The data-set, used for the evaluation, con-
tains 45 verbs divided into five classes/clusters, viz. cognition: 10, motion: 15,
body: 10, exchange: 5, change state: 5. The clustering has been done using
CLUTO and evaluated with the standard clustering measures of entropy (clus-
ters’ level of disorder) and purity (proportion of the most frequent class in the
cluster). The best performing results have been obtained with the Exponential
Point-wise Mutual Information (epmi) weighting schema and the 2 window con-
text (the 2 words on the left and the 2 words on the right of the target word).
The measures are: entropy 0.305 (CCG-DSM) vs. 0.556 (dependency-DSM),
purity 0.756 (CCG-DSM) vs. 0.667 (dependency-DSM). These results on the
one hand confirm that the syntactic structure (encoded in the CG categories)
plays a role in the distributional meaning of words, and on the other show that
CG categories do carry important semantic information too.

3.1.2 Lambek’s lesson: Function application and also Abstraction

As we explained earlier natural language expressions can correspond to first or-
der or higher-order functions and can require one or more argument. Moreover,
at the syntactic level, functions are directional (A\B vs. B/A), since in natu-
ral language function-argument order matters. Hence, CG and the type-logical
grammar based on it consist of two function application rules: backward (when
the argument is on the left of its function) and forward (when the argument is
on the right of its function.)

Function application has been the main focus of several work aiming at
combining CG-like syntax with DSMs. As mentioned above Clark et al. (2008);
Coecke et al. (2010); Baroni & Zamparelli (2010) have been among the pioneers
of such enterprise. As anticipated earlier, Baroni & Zamparelli (2010) look at
how an adjective modifies a noun by employing the matrix-by-vector product
(see below) that allows a matrix (the adjectives, ADJ) to act on a vector (the
noun, N) resulting in a new vector (a new noun, ADJ N). Interestingly, the
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authors show a great advantage of the DSM over the Formal Semantics one
when dealing with composition of content words, namely they show that the
same adjective modifies their argument differently accordingly to which is the
noun it composes with (for instance, “red apple” vs. “red army”.) However, the
authors, by focusing on the adjective-noun constructions, do not consider the
variety of syntactic-semantics constructions natural language exhibits. Baroni
et al. (In press) extend the approach to further cases generalizing the matrix-by-
vector composition to handle n-argument functions and follow the type-logical
framework exploiting the correspondence between Lambek and Lambda calculi.
Again, we will report on this work and refer the reader to the cited bibliography
for related work.

One of the earlier contribution of Lambek mathematical view to the nat-
ural language parsing problem is the discovery of the inverse rule of function
application, namely abstraction. Lambek highlighted that if a structure can
be composed, it can also be de-composed, in other words if one knows that
w1 : B,w2 : B\A yields w1 w2 : A she also knows that e.g. w1 : A/(B\A).
Hence, the Lambek calculus, in the natural deduction format, consists of both
elimination (function application – composition) and introduction (abstraction
– de-composition) rules of the implicational operators (\ and /). A restricted
version of abstraction (type raising) is also present in the CG combinatory ver-
sion, CCG (Steedman, 2000) together with other function composition rules.5

In the type-logical framework, the syntactic trees (derivations) are labelled
with lambda terms that record the operational steps and are therefore called
“proof terms”. Once the proof term of a parsed sentence is built, it can be
replaced with the corresponding semantic representation of the lexical bits in the
linguistic structure parsed. In a Montagovian view they will be replaced with λ-
terms standing for the denotation of the words, in Continuation Semantics they
would be replaced with λ-terms that take context into account (see Bernardi
& Moortgat (2010); Barker & Shan (2006)). In DSM, Baroni et al. (In press)
propose to replace them with the corresponding tensors. Below we will see this
system at work on some toy examples.

Function application in DSM Baroni et al. (In press) propose to use “gen-
eralized matrix-by-vector multiplication” to account for function application

5From the empirical coverage study conducted in Paramita (2012) it results that most of
the sentences in the Wikipedia and ukWaC need only forward application (Wikipedia: around
3M and ukWaC: around 2.6M), backward application (Wikipedia: around 233K and ukWaC:
around 391K), or combination of them: Wikipedia: 25M (uKWaC: 48M); hence totally around
28M sentences in Wikipedia (ukWaC: 51M) would require the generalized matrix-by-vector
composition Baroni et al. (In press) in a rather straight-forward way; around 2.5M (ukWaC:
4.7M) sentences are parsed also with function composition (forward or backward) and around
5.8M (ukWac: 15M) sentences require also backward crossed composition. Furthermore, there
are 18M sentences in Wikipedia and 40M in ukWac that require the conjunction rule, 149K
sentences in Wikipedia and 494K sentences in ukWaC that require generalized backward
crossed composition, and 800K sentences in Wikipedia and 3M sentences in ukWaC that
require the type-raising rule. Of course these numbers are subject to possible mistakes of the
parser.
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defined as below and explained by means of examples in the sequel. Given in-
put V with shape J1× . . . ×Jn and components denoted by Vj1...jn , and a linear
transformation encoded in a tensorM with shape (I1× . . .×Im)×(J1× . . .×Jn)
and components denoted by Mi1...imj1...jn , each component Wi1...im of the out-
put tensor W (of shape I1 × . . . × Im) is given by a weighted sum of all input
components as follows:

Wi1...im =

j1=J1∑
j1=1

. . .

jn=Jn∑
jn=1

Mi1...imj1...jnVj1...jn

The term of the operation is used by the authors to underline the fact that
the general product operation they assume is equivalent to unfolding both the
input and the output tensors into vectors, applying standard matrix-by-vector
multiplication, and then re-indexing the components of the output to give it the
appropriate shape. For example, to multiply a (I × J)× (K × L) fourth-order
tensor by a K × L matrix, they treat the first as a matrix with I × J rows
and K × L columns and the second as a vector with K × L components (e.g.,
a (2 × 3) × (3 × 3) tensor can be multiplied with a (3 × 3) matrix by treating
the latter as a 9 component vector and the former as a 6 × 9 matrix). They
perform matrix-by-vector multiplication and then rearrange the resulting I×J-
sized vector into a matrix of shape I ×J (continuing the example, the values in
the 6 component output vector are re-arranged into a 2 × 3 matrix). This is a
straightforward way to apply linear transformations to tensors (indeed, there is
a precise sense in which all tensors with the same shape constitute a “vector”
space). The simple matrix-by-vector multiplication is used straight forwardly
to apply a first-order function to an argument:

f(a) =def F× a = b

where F is the matrix encoding function f as a linear transformation, a is the
vector denoting the argument a and b is the vector output to the composition
process. This is the rule used in Baroni & Zamparelli (2010) to account for the
composition of an adjective with a noun. Let us assume that nouns live in a
2-dimensional space. Hence the adjective, as a function from nouns to nouns,
is a 2 × 2 matrix (it multiplies with a 2 component vector to return another 2
component vector). See the toy example in Table 2: suppose old is associated
to the toy matrix and applied to the dog vector, it returns the vector for old
dog :

As observed in Baroni et al. (In press), in the case of old, we can imagine the
adjective having a relatively small effect on the modified noun, not moving its
vector too far from its original location (an old dog is still a barking creature).
This will be reflected in a matrix that has values close to 1 on the diagonal
cells (the ones whose weights govern the mapping between the same input and
output components), and values close to 0 in the other cells (reflecting little
“interference” from other features). On the other hand, an adjective such as
dead that alters the nature of the noun it modifies more radically could have 0
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OLD runs barks

runs 0.5 0
barks 0.3 1

×
dog

runs 1
barks 5

=

OLD(dog)

runs (0.5× 1) + (0× 5) = 0.5
barks (0.3× 1) + (5× 1) = 5.3

Table 2: The adjective old as the distributional function encoded in the matrix on
the left. The function is applied to the noun dog via matrix-by-vector multiplication
to obtain a compositional distributional representation of old dog (right).

or even negative values on the diagonal, and large negative or positive values in
many non-diagonal cells, reflecting the stronger effect it has on the noun.

We can now look at the function application cases required by the fragment
of English whose vocabulary is presented in Table 1.

(a) A matrix (2nd order tensor) composes with a vector (ADJ N e.g., red dog,
DET N e.g., the dog, DP IV e.g., the dog barks, dogs bark);

(b) A 3rd order tensor composes with two vectors (DP TV DP, dogs chase
cats, N Pre DP, dog with tails, DP CONJ DP dogs and cats)

(c) A higher-order tensor composes with a matrix ((c1) Rel IV, e.g., which
barks, Rel TV DP which chases cats, and (c2) Rel DP TV, which dogs
chase)

For instance, when parsing the expressions dogs bark, dogs chase cats and
which chase cats, CG produces the structures and terms in the trees of Figure 1.
To help reading the proof term, we use the @ symbol to indicate the application
of a function to an argument (f@a).

Baroni et al. (In press) replace the variables with the corresponding DSM
representations obtained as described above and compute the vectors represent-
ing the sentences. In particular, in the (a) tree X and Y are replaced with
the matrix BARK and the vector dogs, respectively, giving BARK × dogs;
whereas in the (b) tree X is replaced by the 3rd order tensor representing the
meaning of chase, and Y and Z are replaced with the vectors representing the
meaning of dogs and cats, respectively. Hence, we obtain (CHASE × cats) ×
dogs. Similarly, for (c1) WHICH× (CHASE × cats). Once we have built the
meaning representation of the sentence, we can compute its meaning by means
of generalized matrix-by-vector multiplication introduced above.

Below, we simplify the problem by using a toy scenario in which sentences
live in a two dimensional space (Cs2), determiner phrases in a four dimensional
space (Cdp4

), and nouns into a three dimensional space (Cn3
). As said above,

we have three cases to consider.

(a) Matrix vector composition Matrix vector composition can be exempli-
fied by the operation composing a determiner phrase and an intransitive verb, as
in the sentence before dogs bark. The CG labeled syntactic tree of this sentence
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(a) S : (X@Y )

DP : Y

dogs

DP\S : X

bark

(b) S : (X@Y )@Z

DP : Z

dogs

DP\S : X@Y

(DP\S)/DP : X

chase

DP : Y

cats
(c1) N\N : Z@(X@Y )

(N\N)/(DP\S) : Z

which

DP\S : X@Y

(DP\S)/DP : X

chase

DP : Y

cats

Figure 1: Proof terms: Function application

gives us BARK dogs. Since in our toy semantic space scenario the semantic
type of an intransitive verb is Cdp4 → Cs2 and of a determiner phrases is Cdp4 ,
we take BARK and dog to be a 2 × 4 matrix and a 4-dimensional vector,
respectively; these terms are composed simply by function application which
returns a 2-dimensional vector standing for the meaning of the whole sentence.

Below we represent the dp contexts as dp1, dp2, dp3, dp4 and similarly the
two s contexts as s1, s2.

DP\S : matrix

bark dp1 dp2 dp3 dp4
s1 n11 n12 n13 n14
s2 n21 n22 n23 n24

DP: vector

dogs
dp1 k1
dp2 k2
dp3 k3
dp4 k4

S: vector

dogs bark
s1 (n11, n12, n13, n14) · (k1, k2, k3, k4)
s2 (n21, n22, n23, n24) · (k1, k2, k3, k4)

=

S: vector

dogs bark
s1 (n11 × k1) + . . .+ (n14 × k4)
s2 (n21 × k1) + . . .+ (n24 × k4)

(b) 3rd order tensor composed with two vectors An example of this case
is provided by the composition of a transitive verb with its object and subject.
For instance, for the sentence dogs chase cats, CG produces the labeled syntactic
tree seen above which gives us the DS representation (CHASE × cats)×dogs.
Hence, we need to apply step-wise the 3rd order tensor, the transitive verb,
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to two vectors, the object and the subject. In our toy example, the transitive
verbs have semantic type Cdp4 → (Cdp4 → Cs2). Hence, the DS meaning
representation of chase is a (2 × 4) × 4 tensor; we can think of it as tensor of
four slices of one 2× 4 matrix each.

chase

slice 1:
dp1 dp2 dp3 dp4

s1 n111 n112 n113 n114
s2 n121 n122 n123 n124

. . .

slice 4:
dp1 dp2 dp3 dp4

s1 n411 n412 n413 n414
s2 n421 n422 n423 n424

The application of chase to cats gives the following 2× 4 matrix:

chase cats dp1 . . . dp4
s1 (n111, n

1
12, n

1
13, n

1
14) · (k1, k2, k3, k4) . . . (n411, n

4
12, n

4
13, n

4
14) · (k1, k2, k3, k4)

s2 (n121, n
1
22, n

1
23, n

1
24) · (k1, k2, k3, k4) . . . (n421, n

4
22, n

4
23, n

4
24) · (k1, k2, k3, k4)

which can then be applied to the 4 dimensional vector representing dogs
yielding a 2 dimensional vector representing the whole sentence.

(c) Higher order-tensor matrix composition The only higher-order ten-
sor in Table 1 is the one representing a relative pronoun. From a formal semantic
point of view, a relative pronoun creates the intersection of two properties. e.g.
[[dog]]∩ [[chase cats]]; in distributional semantics, we can look at it as a 4th order
tensor whose first argument is a verb phrase, hence a matrix, and its second
argument is a noun, hence a vector, and it yields a modified noun, hence again
a vector. In our toy example, it lives in a (3×3)× (2×4) space, it is of semantic
type (Cdp4 → Cs2) → (Cn3 → Cn3) and can be applied to a 2 × 4 matrix.
For instance which can be applied to the matrix obtained above chase cats. As
explained in Baroni et al. (In press), this operation can be reduced to the sim-
pler one considered above, namely to the application of a 3rd order tensor to a
vector. To this end, Baroni et al. (In press) apply the unfolding method that
transforms a tensor into one of lower order by reordering its elements. There
are several ways of reordering the elements, for instance, a (2 × 3) × 4 tensor
can be arranged as a 6 × 4 matrix. Which mode is chosen is not important as
far as across related calculations the same mode is used. Going back to our
linguistic example, the relative pronoun and the VP-matrix could be unfolded
into a (3×3)×8 tensor and a 8 dimensional vector, respectively. To understand
the unfolding method, let us look at how it could transform the 2×4 VP-matrix
into a 8 dimensional vector and let us take as unfolding mode the concatena-
tion of its elements as illustrated below. Let us assume the matrix representing
chase cats represented abstractly above is instantiated as below; by unfolding
we obtain the corresponding vector as following:

chase cats dp1 dp2 dp3 dp4
s1 1 3 5 7
s2 2 4 6 8

;unfolding (1, 2, 3, 4, 5, 6, 7, 8).
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The evaluation carried out so far using generalized matrix-by-vector oper-
ation for function application has obtained encouraging results. See Vecchi et
al. (2011); Grefenstette et al. (2013) for the evaluation of the compositional
distributional models for adjective-noun and transitive verb-object composi-
tion, respectively and Pham et al. (2013) for an evaluation of (Baroni et al., In
press)’s approach at sentential level. No evaluation has been carried out yet on
relative sentences, these constructions are going to be object of investigation of
the COMPOSES project.6

Abstraction in DSMs Abstraction is used mostly for two cases: long dis-
tance dependency and inverse scope. The latter is more a challenge for the
formal grammar researchers than for the semanticists: once the grammar pro-
vides the right representations of an ambiguous sentence the semantic operations
should be able to compute the proper meaning straight forwardly. Hence, in
the following we will look only at long distance dependencies as instances of
abstraction, and in particular at the case of relative pronoun that extracts the
object of the relative clause sentence.

As far as we know, the first attempt to handle cases of long distance depen-
dencies within the compositional distributional semantic framework is presented
in Baroni et al. (In press) where the authors discuss the dependency of a main
sentence subject from the transitive verb of a relative clause, e.g., “A cat which
dogs chase runs away”: the object of the relative clause is missing and its role
is played by “A cat” thanks to the presence of the relative pronoun which. The
lack of the object can be marked by a trace “(A cat (which dogs chase . . . ))
runs away”. The type-logical view on the composition of this sentence can be
represented by the tree below (Figure 2) that starts by assuming an hypotheti-
cal object (hyp), builds the sentence dogs chase hyp (Figure 2, tree on the left)
and then withdraws the hypothesis building a tree without it (Figure 2, tree
on the right) using abstraction. The application of abstraction is governed by
the presence of the higher-order two-argument category (N\N)/(S/DP) assigned
to the relative pronoun; it requires a sentence missing a DP on the rightmost
position to return the category N\N. Hence, the parser encounters a category
mismatch: It has the task of composing (N\N)/(S/DP) (which) with the tree of
category S corresponding to “dogs chase hyp”. The tree of category S, however,
contains an hypothesis of category DP—it would be a sentence if a DP had been
provided. The parser can now withdraw the hypothetical DP and build the tree
of category S/DP. The rule that allows this step is the one-branch rule encoding
hypothetical reasoning. The derivation can then proceed by function applica-
tion. The lambda calculus goes step by step with this hypothetical reasoning
process. Besides the function application rules we have used so far, it consists
of the abstraction rule that abstracts from the term (Z@X)@Y (namely the
term assigned to the S tree –hence, a term of type t), the variable X assigned
to the hypothetical DP (hence, a term of type e), building the lambda term
λX.(Z@X)@Y (a term of type (e→ t)). The next step is again the application

6http://clic.cimec.unitn.it/composes/
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of a function (W of type (e→ t)→ ((e→ t)→ t)) to an argument (the lambda
term of type (e→ t) we have just built).

S : (Z@X)@Y

DP : Y

dogs

DP\S : Z@X

(DP\S)/DP : Z

chase

DP : X

hyp

N\N : W@(λX.(Z@X)@Y )

(N\N)/(S/DP ) : W

which

S/DP : λX.(Z@X)@Y

S : (Z@X)@Y

DP : Y

dogs

DP\S : Z@X

(DP\S)/DP : Z

chase

. . .

Figure 2: Proof terms: function application and abstraction: hypothetical reasoning

Syntactically, these constructions challenge any formal grammars, hence they
have attracted the attention of researchers and several solutions have been pro-
posed within the CG framework. Baroni et al. (In press) build the syntactic
tree in the way more straightforwardly linked to the distributional semantics
analysis even though the rule employed (Figure 3), namely associativity, would
cause over-generation problems.7

N\N : Z@(XT @Y )

(N\N)/(S/DP ) : Z S/DP : XT @Y

DP : Y DP\(S/DP ) : XT

(DP\S)/DP : X

Figure 3: Proof terms: associativity (syntax) and transformation (semantics)

The proof term consists of just function application of the kinds we have
discussed above. The only step here to introduce is the one that transforms
a transitive verb category from (DP\S)/DP into DP\(S/DP ). Syntactically,
this step corresponds to associativity, semantically it corresponds to the tensor

7Its application could be controlled by employing for instance the multi-modal version of
CG Moortgat (1997), but since our focus is on the composition of the distributional semantic
representations involved in such constructions, we will overlook the syntactic issues. This
semantic analysis or a variation of it could be connected to the different syntactic proposals
in the literature.
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transformation rule which establishes in general terms how the elements of a
tensor can be switched:

(T × v)×w = (T T ×w)× v

This rule allows to transform a (pre-trained) transitive verb tensor that
would normally be multiplied by an object and then a subject into the trans-
posed form, that can take the subject first, and the object later, producing the
same result. In the tree, this semantic rule is presented as taking the term X
and yielding the term XT . Now the proof term can be replaced with the actual
distributional representation, obtaining WHICH × (CHASET × dogs), which
can later modify the vector representing cat.

Let’s now assume as toy example that a transitive verb is a (3 × 2) × 2
matrix; for instance, chase consists of the two slice tensor below; it can be
transformed by switching the second and first column of the first and second
slice, respectively. This guarantees that (CHASE dogs) cats is equivalent to
(CHASET cats) dogs as the reader can test by herself.

CHASE
slice 1:
1 4
2 5
3 6

slice 2:
7 10
8 11
9 12

; CHASET
slice 1:
1 7
2 8
3 9

slice 2:
4 10
5 11
6 12

The use of the tensor transformation rule above avoid having to use the
counterpart of abstraction, and does not provide a way for handling structure
de-composition, as a more general solution might require. Hence, we wonder
whether as Lambek highlighted the possibility of extending CG with abstraction,
DSM framework can be extended with an equivalent rule.

We conjecture that a solution to long distance dependency could come from
the categorical view presented in Preller & Sadrzadeh (2009), where the authors
discuss the “eta maps” showing that they create Bell states that produce an
extra space allowing for “teleportation”, in other words the eta maps enable the
information to flow between the quantum states that are not locally close. For
instance, in the case of a negative transitive sentence “John does not like Mary”
does and not are vectors that act as identity and as base swapper, respectively.
The eta maps move the subject vector john to be the argument of the transitive
verb so that the does and not vectors act on the representation of the positive
transitive sentence swapping its bases, namely making it true if it was false, and
vice versa.

Alternative solutions could come from the regression method discussed above.
Following Montague’s intuition regarding type lifting, namely that an expres-
sion like a personal name can be represented either as an object (a constant
of type e) or as a set of those properties that hold for that object (a second
order function of type ((e → t) → t)), we could assume that an expression of
syntactic category DP can be represented semantically either by a vector or
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by a higher order tensor obtained from the corresponding vector by means of
some tensor transformation rule. This rule could be learned by regression: we
could induce from the corpus the vectors of a quantifier phrase (DET N, e.g.,
“some dog”), learn the tensor representing the same expression by regression,
e.g. given the input pair (runs, “some dog runs”), learn the function represent-
ing “some dog”, and then learn the transformation rule from the induced vector
representing “some dog” to its higher order tensor representation learned by
regression; or we could find ways to exploit the CCG parsed corpus for learning
the type-raising rule from those structures in which it has been used.

Question In short, the challenge we are posing to the compositional distri-
butional semantic community is to handle the semantic composition of not-
juxtaposed expressions.

3.2 From logical entailment to entailment in DSM

In the brief review of the core logical concepts behind formal semantics we have
highlighted the difference between satisfiability (an entailment that holds in a
particular interpretation) and validity (an entailment that holds across all the
interpretation). The latter is due to the presence of logical words, like deter-
miners, whose meaning is independent from a specific interpretation. Hence,
in the following before reviewing the work on entailment within DSMs, we are
going to present DSMs views on logical (grammatical) words.

3.2.1 Grammatical words as pre-defined logical operators

Garrette et al. (2011) proposes an interesting hybrid framework combining the
complementary strengths of FOL and DSM, namely the expressivity of the for-
mer and the flexibility of the latter. The authors use FOL for representing
the logical structure of a sentence, and DSM for capturing the content words
meaning and project lexical inferences from the vector space to logical form. In
a nutshell, based on the idea that distribution similarity between expressions
A and B corresponds to substitutability of B in the place of A, they generate
inference projection rules like ∀x.Car(x)→ Vehicle(x) using WordNet as a fil-
ter to validate such axioms. Then, FOL sentence representations are obtained
using Boxer (Curran et al., 2007). Given a pair of sentences (Prem, Hyp), they
check whether Hyp could follow from Prem (Prem → Hyp) from a DS view by
checking (i) if there are inference projection rules between the words occurring
in the two sentences and (ii) contextualising such rules by assigning them a
weight: given a rule that relates a word w1 in Hyp with a word w2 in Prem,
the weight is obtained by computing the similarity of w1 with the sum of the
vectors of the words co-occurring with w2 in Prem (the context of w2.) In the
simplified setting described in Garrette et al. (2011), the authors generate a
potential alignment between any pair of words, within the two sentences, that
are related (synonymous or hyponym/hypernym up to a certain distance) in
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WordNet, which also means that they have to be of the same syntactic cate-
gory. Moreover, they currently only deal with single-word paraphrases. Finally,
they use Markov Logic Networks for reasoning on FOL weighted clauses. For
instance, given the projection rule (1) ∀x.Car(x) → Vehicle(x), by FOL they
can infer that given ¬∃x.Vehicle(x) ∧ Own(x) and the rule (1) above, then
¬∃x.Car(x) ∧ Own(x). The rule (1) receives a high weight in the given contexts
since car is similar to own (the context of vehicle). Following Natural Logic, to
handle inferences involving sentences containing nested propositions, they mark
the polarity of the position of the embedded proposition.

The view of considering logical words, in particular negation, as pre-defined
and close to their truth-value meaning is present in other work too (see Clark et
al. (2008); Widdows (2003) among others), though in a full vector space model
approach. Clark et al. (2008) take sentences to be in the space spanned by a
single vector (~1), identified with “true” and the origin to be “false” (~0). So a
sentence like “John likes Mary” is represented by the vector ~1 if the sentence
is “true” and by ~0 otherwise, moreover the authors leave open the possibility
of considering degree of sentence meaning instead of just the two truth values.
Within the DSM framework of Clark et al. (2008), Preller & Sadrzadeh (2009)
takes negation to be a base swapper operator. The details of this approach
are further explained in Coecke et al. (2010). Similarly, Widdows (2003) starts
from the intuition that unrelated meanings should be orthogonal to one another,
which is to say that they should have no features in common at all. Hence, he
takes negation to generate a vector representation that is completely orthogonal
to the negated term. In the following, we will report on some preliminary results
carried out on grammatical words, more in particular on determiners and deter-
miner phrases, that suggest the possibility of undertaking a truly distributional
analysis of these words too.

3.2.2 Grammatical words as tensors learned from their use

Menini (2012) studies the distributional behavior of 50 determiners (articles,
quantifiers, and cardinals). First of all, the author aims to check how the distri-
butional context changes if at the same nouns are applied different determiners
and if similar determiners occur in similar contexts. To this end, he builds
two DSMs using a large corpus:8 (a) one with lemmatized content words as di-
mension (LDSM), and (b) a second one with inflected content and grammatical
words as dimensions (IDSM). For each of the studied determiner, he extracts de-
terminer phrases (DPs) from the corpus choosing the most frequent 20K nouns
and their vector representation in the two DSMs mentioned above, and extract
the closest neighbour of the DPs vectors. The experiment shows that in the
DP vector representations of LDSM the meaning of the nouns emerges over
the one of the determiner contrary to what happens in IDSM. Moreover, the
use of a noun seems to change according to the determiner used: for instance,

8ukWaC, a 2 billion word corpus crawled from the web, British National Corpus, a 100 mil-
lion word corpus, Wikipedia, about 1.6 billion tokens. The three corpora have been tokenzied
and tagged with Treetagger.
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whereas every dog tends to co-occur with general concepts, usually attributed to
dogs in general – animal, tail, pet, love, cleaver and friend – “that dog” occurs
with more familiar words, usually associated to a single dog, single episodes or
everyday situation – bite, owner, bad, police, kill or bloody. Interestingly, the
author conjectures that the determiner that is usually preferred for describing
negative events, creating a distance between the dog and the speaker, whereas
other determiners like this are used in positive contexts, occurring with words as
rescue, show, wonderful, loving or companion. All in all, the experiment brings
evidence to the claim that using a determiner rather than another affects the
context in which the DP occurs. The result is confirmed by a second experi-
ment carried out in Menini (2012) based on clustering. In this case, the vector
representation of the determiner is computed out of the DPs by calculating
their average vector representation. Interesting clusters have indeed emerged
(e.g. {too few, too many, too much}, and {four, three, two, several} etc.), but fur-
ther studies in this direction are necessary since no clustering method alone has
succeed in the task. The experiment shows that also determiners seem to be
characterized by their distributional context, but a DSM more suitable to their
role should be built for them.

Finally, Menini (2012) reports on a third experiment in which pairs of DPs
are studied. The attention is focused on nine determiners (all, every, four, that,
these, this, those, three and two.) A classifier is used for recognizing similar
vs. dissimilar DP pairs.9 The author has carried out the task using different
classifiers, the best results have been obtained with a polynomial super vector
machine (SVM)10 that has obtained the following weighted average of the pre-
cision and recall (F-measures): 0.8% (LDSM, with raw co-occurrence values)
and 0.81 % (inflected IDSM, with lmi weight.) The same experiment has also
be tried against unseen determiners, viz., the testing dataset contains one de-
terminer more than the training dataset, but the same nouns already used for
the training. The SVM was able to correctly classify up to 68.9% of the 1226
never seen instances.

Before concluding this section, we would like to draw the reader attention
on some interesting studies on determiner phrases carried out within the psy-
cholinguistic community. As it has been emphasized in Paterson et al. (2011)
quantifiers have been studied in details from the formal semantics angle, but
they have been mostly ignored by the empirical based community which has
focused on content words. Interestingly, they have been studied in Pragmatics
and Psycholinguistics. In Pragmatics, it has been claimed that quantifiers like
no, few, some and all are scalar expressions: they can be ordered on a scale

9Similar are DPs that share the determiners or the noun (e.g., four countries-four states,
or that have similar determiners and similar nouns (e.g., two boats-four boats) or have similar
determiners and similar nouns (e.g., this shirt-that coat); whereas dissimilar DPs are such that
they have different determiners and different nouns (e.g., this village-every cat), or different
determiners and similar noun (e.g., two musicians-those painters) (or viceversa, e.g., two
artists-four ducks)

10The other classifiers used are Naive, J48, SVM Radial Kernel. Interestingly, the need
of a polynomial SVM classifier for classifying relations between DPs was shown in an other
internal project too on DP entailment.
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with respect to the strengths of the information that they convey. As it is well
known, their use involves pragmatic inferences called scalar implicature (Grice,
1975) (“the participants in a conversation expect that each will tailor their
contribution to be as informative as required but no more informative than is
required”). Though, in formal semantics, for instance some has just one mean-
ing, in practice it can be used in different ways, see for instance the example
below taken from Paterson et al. (2011)

• R: if you ate some of the cookies, then I won’t have enough for the party.

• M: I ate some of the cookies. In fact, I ate all of them. [Meaning: “some
and possibly all”]

• R: Where are the apples that I bought?

• M. I ate some of them [Meaning: “some but not all”)

Moreover, Paterson et al. (2011) shows that quantifiers can have different
“polarity” even when denoting the same vague quantity: Quantifiers with pos-
itive (negative) polarity, e.g., a few, quite a few, many, (resp. few, very few, not
many) are used to encourage (resp., discourage) the speaker to do something.
The distinction between positive vs. negative polarity QPs is reinforced by their
different behaviour with respect to the set of discourse entities they refer to
and they make accessible via anaphora. To this end, the authors distinguish
between the “reference set”, viz. the set of entities the quantifier operates upon,
and the “complement set”, viz., the complement of the reference set.11 Positive
polarity QPs put the focus on the reference set while negative polarity QPs put
the focus on the complement set. Moreover, the reference set is available for
anaphora. Example:

“(a) A few/(b)Few of the students attended the lecture. They . . . .”

people continue (a) by speaking of properties of the reference set (e.g., “They
listen carefully and took notes”) and (b) by speaking of the complement set (e.g.,
“They decided to stay at home instead”)

Question The psycholinguistics results on determiners reported above seem to
confirm the possibility of studying these words (and maybe the class of logical
words in general) from a distributional view. We wonder whether they also
suggest that the relevant part of the context of use could be of a different nature
than the one considered within DSMs for content words. For instance, instead
of just looking at co-occurency frequency within a sentence, we might need to
consider the discourse level (see the comment above on anaphora), or we might
need to consider instead of the words in isolation, the semantic relation holding
within the words in the observed context (see the comment on the choice of the
verb phrase above.)

11Example: “many of the students attended the lecture”. The reference set is the set of all
the students who were present at the lecture, the complement set is the set of all the students
who were absent.
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3.3 Entailment in DSM

Clarke (2011) studies the algebraic properties a vector space used for represent-
ing natural language meaning needs to have and identifies possible directions to
account for degree of entailment between distributional representations propos-
ing to use the partial order of the defined algebraic structure. However, he does
not describe the idea in details and does not evaluate it on any empirical ground.
Implementations and interesting evaluation results have been carried out at lexi-
cal level. For instance, Erk (2009) suggests that it may not be possible to induce
hyponymy information from a vector space representation, but it is possible to
encode the relation in this space after it has been obtained through some other
means. On the other hand, recent studies (Geffet & Dagan, 2005; Kotlerman et
al., 2010; Weeds et al., 2004) have pursued the intuition that entailment is the
ability of one term to “substitute” for another. For example, baseball contexts
are also sport contexts but not vice versa, hence baseball is “narrower” than
sport (baseball |=sport). On this view, entailment between vectors corresponds
to inclusion of contexts or features, and can be captured by asymmetric mea-
sures of distribution similarity. In particular, Kotlerman et al. (2010) carefully
crafted the balAPinc measure for lexical entailment. In brief, the balAPinc
score is higher if many features are present and the included features are ranked
high. Baroni et al. (2012) look at a similar issue but from a different perspective
and by going beyond lexical level. The authors do not use a hand-crafted mea-
sure, but rather a machine learning based classifier. They use a SVM and show
that it can learn the entailment relation between phrases of the same syntactic
categories: from a training set of noun pairs it learns the entailment relation
between expressions of this category (‖=N ) e.g., from training examples like
big dog ‖= dog, it learns dog ‖= animal, and from a training set of quantifier
phrases, e.g. all dog ‖= some dog, it learns the ‖=QP even when the testing data
set contains QPs never seen in the training data set. The entailment is specific
to the syntactic category and does not generalize across the categories (if the
SVM is trained on ‖=N it will obtain bad performance on a ‖=QP test dataset,
and viceversa if trained on ‖=QP it will obtain bad performance on a ‖=N

test dataset.)12 The results reported in Baroni et al. (2012) had been obtained
with a cubic polynomial kernel; interestingly, Gutierrez Vasques (2012) shows
that a linear classifier will obtain worse results and that a two degree classifier
(either homogeneous or inhomogeneous) would perform equally well than the
cubic one. These latter results confirm the involvement of features interaction,
rather than purely inclusion, in the entailment relation of DSM representations.

4 Conclusions

By reviewing the core aspects of formal and distributional semantics models
and by presenting the more recent results obtained within DSMs beyond lexical

12This second half of the experiment, training on QPs and testing on Ns has been carried
out by Gutierrez Vasques (2012).
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level adopting the formal semantics binoculars, we have highlighted some open
issues. First of all, we have underlined the importance of considering the cor-
respondence between syntax and semantic both as expressed between syntactic
categories and semantic types (types of semantic space) and as captured by the
composition rules. As for the latter, we have raised the question of how struc-
tures with gaps can be handled with DSMs for which researchers so far have
focused only on function application of juxtaposed function-arguments. More-
over, by introducing the concepts of satisfiability and validity, we have focused
on the role the logical (grammatical) words play in natural language reasoning
from a logic view and compared their role when observed from the language of
use perspective. More research needs to be carried out on this class of words to
understand whether there is the need of an hybrid system that combines logic
and distributional relations or whether the integration of the two approaches
would be needed only to take into account the two fregean aspects of meaning,
reference and sense.
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